Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T04:39:34.610Z Has data issue: false hasContentIssue false

Detailed numerical investigation of the drop aerobreakup in the bag breakup regime

Published online by Cambridge University Press:  03 October 2023

Y. Ling*
Affiliation:
Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA Department of Mechanical Engineering, Baylor University, Waco, TX 76798, USA
T. Mahmood
Affiliation:
Department of Mechanical Engineering, Baylor University, Waco, TX 76798, USA
*
Email address for correspondence: stanley_ling@sc.edu

Abstract

Aerobreakup of drops is a fundamental two-phase flow problem that is essential to many spray applications. A parametric numerical study was performed by varying the gas stream velocity, focusing on the regime of moderate Weber numbers, in which the drop deforms to a forward bag. When the bag is unstable, it inflates and disintegrates into small droplets. Detailed numerical simulations were conducted using the volume-of-fluid method on an adaptive octree mesh to investigate the aerobreakup dynamics. Grid-refinement studies show that converged three-dimensional simulation results for drop deformation and bag formation are achieved by the refinement level equivalent to 512 cells across the initial drop diameter. To resolve the thin liquid sheet when the bag inflates, the mesh is refined further to 2048 cells across the initial drop diameter. The simulation results for the drop length and radius were validated against previous experiments, and good agreement was achieved. The high-resolution results of drop morphological evolution were used to identify the different phases in the aerobreakup process, and to characterize the distinct flow features and dominant mechanisms in each phase. In the early time, the drop deformation and velocity are independent of the Weber number, and a new internal-flow deformation model, which respects this asymptotic limit, has been developed. The pressure and velocity fields around the drop were shown to better understand the internal flow and interfacial instability that dictate the drop deformation. Finally, the impact of drop deformation on the drop dynamics was discussed.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbaglah, G.G. 2021 Breakup of thin liquid sheets through hole–hole and hole–rim merging. J. Fluid Mech. 911, A23.CrossRefGoogle Scholar
Apte, S.V., Gorokhovski, M. & Moin, P. 2003 LES of atomizing spray with stochastic modeling of secondary breakup. Intl J. Multiphase Flow 29, 15031522.CrossRefGoogle Scholar
Arrufat, T., Crialesi-Esposito, M., Fuster, D., Ling, Y., Malan, L., Pal, S., Scardovelli, R., Tryggvason, G. & Zaleski, S. 2020 A momentum-conserving, consistent, volume-of-fluid method for incompressible flow on staggered grids. Comput. Fluids 215, 104785.CrossRefGoogle Scholar
Balachandar, S. 2009 A scaling analysis for point particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35, 801810.CrossRefGoogle Scholar
Blanco, A. & Magnaudet, J. 1995 The structure of the axisymmetric high-Reynolds number flow around an ellipsoidal bubble of fixed shape. Phys. Fluids 7, 12651274.CrossRefGoogle Scholar
Burelbach, J.P., Bankoff, S.G. & Davis, S.H. 1988 Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech. 195, 463494.CrossRefGoogle Scholar
Chang, C.-H., Deng, X. & Theofanous, T.G. 2013 Direct numerical simulation of interfacial instabilities: a consistent, conservative, all-speed, sharp-interface method. J. Comput. Phys. 242, 946990.CrossRefGoogle Scholar
Chirco, L., Maarek, J., Popinet, S. & Zaleski, S. 2022 Manifold death: a volume of fluid implementation of controlled topological changes in thin sheets by the signature method. J. Comput. Phys. 467, 111468.CrossRefGoogle Scholar
Chou, W.-H. & Faeth, G.M. 1998 Temporal properties of secondary drop breakup in the bag breakup regime. Intl J. Multiphase Flow 24, 889912.CrossRefGoogle Scholar
Dai, Z. & Faeth, G.M. 2001 Temporal properties of secondary drop breakup in the multimode breakup regime. Intl J. Multiphase Flow 27, 217236.CrossRefGoogle Scholar
Erneux, T. & Davis, S.H. 1993 Nonlinear rupture of free films. Phys. Fluids A 5, 11171122.CrossRefGoogle Scholar
Flock, A.K., Guildenbecher, D.R., Chen, J., Sojka, P.E. & Bauer, H.-J. 2012 Experimental statistics of droplet trajectory and air flow during aerodynamic fragmentation of liquid drops. Intl J. Multiphase Flow 47, 3749.CrossRefGoogle Scholar
Gao, J., Guildenbecher, D.R., Reu, P.L., Kulkarni, V., Sojka, P.E. & Chen, J. 2013 Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography. Opt. Lett. 38, 18931895.CrossRefGoogle ScholarPubMed
Guildenbecher, D.R., Gao, J., Chen, J. & Sojka, P.E. 2017 Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography. Intl J. Multiphase Flow 94, 107122.CrossRefGoogle Scholar
Guildenbecher, D.R., López-Rivera, C. & Sojka, P.E. 2009 Secondary atomization. Exp. Fluids 46, 371.CrossRefGoogle Scholar
Hadj-Achour, M., Rimbert, N., Gradeck, M. & Meignen, R. 2021 Fragmentation of a liquid metal droplet falling in a water pool. Phys. Fluids 33, 103315.CrossRefGoogle Scholar
Han, J. & Tryggvason, G. 1999 Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force. Phys. Fluids 11, 36503667.CrossRefGoogle Scholar
Han, J. & Tryggvason, G. 2001 Secondary breakup of axisymmetric liquid drops. II. Impulsive acceleration. Phys. Fluids 13, 15541565.CrossRefGoogle Scholar
Harper, E.Y., Grube, G.W. & Chang, I.-D. 1972 On the breakup of accelerating liquid drops. J. Fluid Mech. 52, 565591.CrossRefGoogle Scholar
Hinze, J.O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1, 289295.CrossRefGoogle Scholar
van Hooft, J.A., Popinet, S., van Heerwaarden, C.C., van der Linden, S.J.A., de Roode, S.R. & van de Wiel, B.J.H. 2018 Towards adaptive grids for atmospheric boundary-layer simulations. Boundary-Layer Meteorol. 167, 421443.CrossRefGoogle ScholarPubMed
Hsiang, L.-P. & Faeth, G.M. 1992 Near-limit drop deformation and secondary breakup. Intl J. Multiphase Flow 18, 635652.CrossRefGoogle Scholar
Hsiang, L.-P. & Faeth, G.M. 1995 Drop deformation and breakup due to shock wave and steady disturbances. Intl J. Multiphase Flow 21, 545560.CrossRefGoogle Scholar
Ida, M.P. & Miksis, M.J. 1996 Thin film rupture. Appl. Maths Lett. 9, 3540.CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2021 On aerodynamic droplet breakup. J. Fluid Mech. 913, A33.CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2022 Prediction of the droplet size distribution in aerodynamic droplet breakup. J. Fluid Mech. 940, A17.CrossRefGoogle Scholar
Jain, M., Prakash, R.S., Tomar, G. & Ravikrishna, R.V. 2015 Secondary breakup of a drop at moderate Weber numbers. Proc. R. Soc. Lond. A 471, 20140930.Google Scholar
Jain, S.S., Tyagi, N., Prakash, R.S., Ravikrishna, R.V. & Tomar, G. 2019 Secondary breakup of drops at moderate Weber numbers: effect of density ratio and Reynolds number. Intl J. Multiphase Flow 117, 2541.CrossRefGoogle Scholar
Jalaal, M. & Mehravaran, K. 2014 Transient growth of droplet instabilities in a stream. Phys. Fluids 26, 012101.CrossRefGoogle Scholar
Jing, L. & Xu, X. 2010 Direct numerical simulation of secondary breakup of liquid drops. Chinese J. Aeronaut. 23, 153161.CrossRefGoogle Scholar
Joseph, D.D., Belanger, J. & Beavers, G.S. 1999 Breakup of a liquid drop suddenly exposed to a high-speed airstream. Intl J. Multiphase Flow 25, 12631303.CrossRefGoogle Scholar
Kekesi, T., Amberg, G. & Wittberg, L.P. 2014 Drop deformation and breakup. Intl J. Multiphase Flow 66, 110.CrossRefGoogle Scholar
Kulkarni, V. & Sojka, P.E. 2014 Bag breakup of low viscosity drops in the presence of a continuous air jet. Phys. Fluids 26, 072103.CrossRefGoogle Scholar
Lee, C.S. & Reitz, R.D. 2001 Effect of liquid properties on the breakup mechanism of high-speed liquid drops. Atomiz. Spray 11, 119.Google Scholar
Lhuissier, H. & Villermaux, E. 2012 Bursting bubble aerosols. J. Fluid Mech. 696, 544.CrossRefGoogle Scholar
Ling, Y., Fuster, D., Zaleski, S. & Tryggvason, G. 2017 Spray formation in a quasiplanar gas–liquid mixing layer at moderate density ratios: a numerical closeup. Phys. Rev. Fluids 2, 014005.CrossRefGoogle Scholar
Ling, Y., Haselbacher, A. & Balachandar, S. 2011 Importance of unsteady contributions to force and heating for particles in compressible flows. Part 1: modeling and analysis for shock–particle interaction. Intl J. Multiphase Flow 37, 10261044.CrossRefGoogle Scholar
Ling, Y., Parmar, M. & Balachandar, S. 2013 A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Intl J. Multiphase Flow 57, 102114.CrossRefGoogle Scholar
Liu, A.B. & Reitz, R.D. 1993 Mechanisms of air-assisted liquid atomization. Atomiz. Spray 3, 5575.CrossRefGoogle Scholar
Liu, Z. & Reitz, R.D. 1997 An analysis of the distortion and breakup mechanisms of high speed liquid drops. Intl J. Multiphase Flow 23, 631650.CrossRefGoogle Scholar
Lu, J. & Tryggvason, G. 2018 Direct numerical simulations of multifluid flows in a vertical channel undergoing topology changes. Phys. Rev. Fluids 3 (8), 084401.CrossRefGoogle Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.CrossRefGoogle Scholar
Marcotte, F. & Zaleski, S. 2019 Density contrast matters for drop fragmentation thresholds at low Ohnesorge number. Phys. Rev. Fluids 4, 103604.CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.CrossRefGoogle Scholar
Mei, R., Lawrence, C.J. & Adrian, R.J. 1991 Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity. J. Fluid Mech. 233, 613631.CrossRefGoogle Scholar
Meng, J.C. & Colonius, T. 2018 Numerical simulation of the aerobreakup of a water droplet. J. Fluid Mech. 835, 11081135.CrossRefGoogle Scholar
Mikaelian, K.O. 1990 Rayleigh–Taylor and Richtmyer–Meshkov instabilities in multilayer fluids with surface tension. Phys. Rev. A 42, 7211.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1996 Rayleigh–Taylor instability in finite-thickness fluids with viscosity and surface tension. Phys. Rev. E 54, 3676.CrossRefGoogle ScholarPubMed
Miksis, M., Vanden-Broeck, J.-M. & Keller, J.B. 1981 Axisymmetric bubble or drop in a uniform flow. J. Fluid Mech. 108, 89100.CrossRefGoogle Scholar
Mostert, W., Popinet, S. & Deike, L. 2022 High-resolution direct simulation of deep water breaking waves: transition to turbulence, bubbles and droplets production. J. Fluid Mech. 942, A27.CrossRefGoogle Scholar
Neel, B., Lhuissier, H. & Villermaux, E. 2020 ‘Fines’ from the collision of liquid rims. J. Fluid Mech. 893, A16.CrossRefGoogle Scholar
Opfer, L., Roisman, I.V., Venzmer, J., Klostermann, M. & Tropea, C. 2014 Droplet–air collision dynamics: evolution of the film thickness. Phys. Rev. E 89, 013023.CrossRefGoogle ScholarPubMed
O'Rourke, P.J. & Amsden, A.A. 1987 The TAB method for numerical calculation of spray droplet breakup. Tech. Rep. LA-UR-2105. Los Alamos National Laboratory.CrossRefGoogle Scholar
Pai, M.G. & Subramaniam, S. 2006 Modeling interphase turbulent kinetic energy transfer in Lagrangian–Eulerian spray computations. Atomiz. Spray 16, 807826.CrossRefGoogle Scholar
Park, J.-H., Yoon, Y. & Hwang, S.-S. 2002 Improved TAB model for prediction of spray droplet deformation and breakup. Atomiz. Spray 12, 387401.CrossRefGoogle Scholar
Pilch, M. & Erdman, C.A. 1987 Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Intl J. Multiphase Flow 13, 741757.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
Ranger, A.A. & Nicholls, J.A. 1969 Aerodynamic shattering of liquid drops. AIAA J. 7, 285290.Google Scholar
Reyssat, E., Chevy, F., Biance, A.-L., Petitjean, L. & Quere, D. 2007 Shape and instability of free-falling liquid globules. Europhys. Lett. 80, 34005.CrossRefGoogle Scholar
Rimbert, N., Escobar, S.C., Meignen, R., Hadj-Achour, M. & Gradeck, M. 2020 Spheroidal droplet deformation, oscillation and breakup in uniform outer flow. J. Fluid Mech. 904, A15.CrossRefGoogle Scholar
Sakakeeny, J., Deshpande, C., Deb, S., Alvarado, J.L. & Ling, Y. 2021 A model to predict the oscillation frequency for drops pinned on a vertical planar surface. J. Fluid Mech. 928, A28.CrossRefGoogle Scholar
Sakakeeny, J. & Ling, Y. 2020 Natural oscillations of a sessile drop on flat surfaces with mobile contact lines. Phys. Rev. Fluids 5, 123604.CrossRefGoogle Scholar
Sakakeeny, J. & Ling, Y. 2021 Numerical study of natural oscillations of supported drops with free and pinned contact lines. Phys. Fluids 33, 062109.CrossRefGoogle Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567603.CrossRefGoogle Scholar
Sharma, S., Singh, A.P., Rao, S.S., Kumar, A. & Basu, S. 2021 Shock induced aerobreakup of a droplet. J. Fluid Mech. 929, A27.CrossRefGoogle Scholar
Stefanitsis, D., Malgarinos, I., Strotos, G., Nikolopoulos, N., Kakaras, E. & Gavaises, M. 2017 Numerical investigation of the aerodynamic breakup of diesel and heavy fuel oil droplets. Intl J. Heat Fluid Flow 68, 203215.CrossRefGoogle Scholar
Stefanitsis, D., Malgarinos, I., Strotos, G., Nikolopoulos, N., Kakaras, E. & Gavaises, M. 2019 a Numerical investigation of the aerodynamic breakup of droplets in tandem. Intl J. Multiphase Flow 113, 289303.CrossRefGoogle Scholar
Stefanitsis, D., Strotos, G., Nikolopoulos, N., Kakaras, E. & Gavaises, M. 2019 b Improved droplet breakup models for spray applications. Intl J. Heat Fluid Flow 76, 274286.CrossRefGoogle Scholar
Strotos, G., Malgarinos, I., Nikolopoulos, N. & Gavaises, M. 2016 Predicting droplet deformation and breakup for moderate Weber numbers. Intl J. Multiphase Flow 85, 96109.CrossRefGoogle Scholar
Tang, K., Adcock, T. & Mostert, W. 2023 Bag film breakup of droplets in uniform airflows. J. Fluid Mech. 970, A9.Google Scholar
Tanner, F.X. 1997 Liquid jet atomization and droplet breakup modeling of non-evaporating diesel fuel sprays. SAE Trans. J. Engines 106, 127140.Google Scholar
Taylor, G.I. 1949 The shape and acceleration of a drop in a high-speed air stream. In The Scientific Papers of G.I. Taylor. Vol. III. Aerodynamics and the Mechanics of Projectiles and Explosions (ed. G.K. Batchelor). Cambridge University Press.Google Scholar
Theofanous, T.G. 2011 Aerobreakup of Newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43, 661690.CrossRefGoogle Scholar
Theofanous, T.G. & Li, G.J. 2008 On the physics of aerobreakup. Phys. Fluids 20, 052103.CrossRefGoogle Scholar
Theofanous, T.G., Li, G.J. & Dinh, T.-N. 2004 Aerobreakup in rarefied supersonic gas flows. Trans. ASME J. Fluid Engng 126, 516527.CrossRefGoogle Scholar
Theofanous, T.G., Li, G.J., Dinh, T.-N. & Chang, C.-H. 2007 Aerobreakup in disturbed subsonic and supersonic flow fields. J. Fluid Mech. 593, 131170.CrossRefGoogle Scholar
Theofanous, T.G., Mitkin, V.V. & Ng, C.L. 2013 The physics of aerobreakup. III. Viscoelastic liquids. Phys. Fluids 25, 032101.CrossRefGoogle Scholar
Theofanous, T.G., Mitkin, V.V., Ng, C.L., Chang, C.H., Deng, X. & Sushchikh, S. 2012 The physics of aerobreakup. II. Viscous liquids. Phys. Fluids 24, 022104.CrossRefGoogle Scholar
Tiwari, S.S., Pal, E., Bale, S., Minocha, N., Patwardhan, A.W., Nandakumar, K. & Joshi, J.B. 2020 a Flow past a single stationary sphere, 1. Experimental and numerical techniques. Powder Technol. 365, 115148.CrossRefGoogle Scholar
Tiwari, S.S., Pal, E., Bale, S., Minocha, N., Patwardhan, A.W., Nandakumar, K. & Joshi, J.B. 2020 b Flow past a single stationary sphere, 2. Regime mapping and effect of external disturbances. Powder Technol. 365, 215243.CrossRefGoogle Scholar
Vanden-Broeck, J.-M. & Keller, J.B. 1980 Deformation of a bubble or drop in a uniform flow. J. Fluid Mech. 101, 673686.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5, 697702.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412.CrossRefGoogle Scholar
Wert, K.L. 1995 A rationally-based correlation of mean fragment size for drop secondary breakup. Intl J. Multiphase Flow 21, 10631071.CrossRefGoogle Scholar
Williams, M.B. & Davis, S.H. 1982 Nonlinear theory of film rupture. J. Colloid Interface Sci. 90 (1), 220228.CrossRefGoogle Scholar
Yang, W., Jia, M., Sun, K. & Wang, T. 2016 Influence of density ratio on the secondary atomization of liquid droplets under highly unstable conditions. Fuel 174, 2535.CrossRefGoogle Scholar
Zhang, B., Popinet, S. & Ling, Y. 2020 Modeling and detailed numerical simulation of the primary breakup of a gasoline surrogate jet under non-evaporative operating conditions. Intl J. Multiphase Flow 130, 103362.CrossRefGoogle Scholar
Zhao, H., Liu, H.-F., Xu, J.-L., Li, W.-F. & Lin, K.-F. 2013 Temporal properties of secondary drop breakup in the bag-stamen breakup regime. Phys. Fluids 25, 054102.CrossRefGoogle Scholar

Ling and Mahmood Supplementary Movie 1

Time evolutions of the drop surface and vortical structures for drop aerobreakup at We=12.0 and Re=2483. The color on the drop surface represents the interfacial velocity magnitude.

Download Ling and Mahmood Supplementary Movie 1(Video)
Video 14.6 MB

Ling and Mahmood Supplementary Movie 2

Time evolutions of the drop surface and vortical structures for drop aerobreakup at We=15.3 and Re=2800. The color on the drop surface represents the interfacial velocity magnitude.

Download Ling and Mahmood Supplementary Movie 2(Video)
Video 6.7 MB

Ling and Mahmood Supplementary Movie 3

Time evolutions of the drop surface and pressure on the central plane for drop aerobreakup at We=12.0 and Re=2483.

Download Ling and Mahmood Supplementary Movie 3(Video)
Video 2.1 MB

Ling and Mahmood Supplementary Movie 4

Time evolutions of the drop surface and pressure on the central plane for drop aerobreakup at We=15.3 and Re=2800.

Download Ling and Mahmood Supplementary Movie 4(Video)
Video 1.1 MB