Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T01:16:44.860Z Has data issue: false hasContentIssue false

The diffusing-velocity random walk: a spatial-Markov formulation of heterogeneous advection and diffusion

Published online by Cambridge University Press:  08 January 2021

Tomás Aquino*
Affiliation:
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000Rennes, France
Tanguy Le Borgne
Affiliation:
Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000Rennes, France
*
Email address for correspondence: tomas.decamposaquino@univ-rennes1.fr

Abstract

The spatial distribution of a scalar undergoing advection and diffusion is impacted by the velocity variability sampled by tracer particles. In spatially structured velocity fields, such as porous medium flows, Lagrangian velocities along streamlines are often characterized by a well-defined correlation length and can thus be described by spatial-Markov processes. Diffusion, on the other hand, is generally modelled as a temporal process, making it challenging to capture advective and diffusive dynamics in a single framework. We develop a description of transport based on a spatial-Markov velocity process along Lagrangian particle trajectories, incorporating the effect of diffusion as a local averaging process in velocity space. The impact of flow structure on this diffusive averaging is quantified through an effective shear rate. The latter is fully determined by the point statistics of velocity magnitudes together with characteristic longitudinal and transverse length scales associated with the flow field. For infinite longitudinal correlation length, our framework recovers Taylor dispersion, and in the absence of diffusion it reduces to a standard spatial-Markov velocity model. We derive dynamical equations governing the evolution of particle position and velocity and obtain scaling laws for the dependence of longitudinal dispersion on Péclet number. These results provide new insights into the role of shear and diffusion on dispersion processes in heterogeneous media.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aquino, T. & Dentz, M. 2018 A coupled time domain random walk approach for transport in media characterized by broadly-distributed heterogeneity length scales. Adv. Water Resour. 119, 6069.10.1016/j.advwatres.2018.07.009CrossRefGoogle Scholar
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235 (1200), 6777.Google Scholar
Banton, O., Delay, F. & Porel, G. 1997 A new time domain random walk method for solute transport in 1–D heterogeneous media. Ground Water 35 (6), 10081013.10.1111/j.1745-6584.1997.tb00173.xCrossRefGoogle Scholar
Bear, J. 1989 Dynamics of Fluids in Porous Media. Dover.Google Scholar
Benson, D. A. & Meerschaert, M. M. 2009 A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations. Adv. Water Resour. 32 (4), 532539.10.1016/j.advwatres.2009.01.002CrossRefGoogle Scholar
Berkowitz, B., Cortis, A., Dentz, M. & Scher, H. 2006 Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44 (2), RG2003.10.1029/2005RG000178CrossRefGoogle Scholar
Bijeljic, B. & Blunt, M. J. 2006 Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. 42 (1), W01202.CrossRefGoogle Scholar
Bolster, D., Méheust, Y., Borgne, T. L., Bouquain, J. & Davy, P. 2014 Modeling preasymptotic transport in flows with significant inertial and trapping effects – the importance of velocity correlations and a spatial Markov model. Adv. Water Resour. 70, 89103.10.1016/j.advwatres.2014.04.014CrossRefGoogle Scholar
Coats, K. H. & Smith, B. D. 1964 Dead-end pore volume and dispersion in porous media. Soc. Petrol. Engng J. 4 (1), 7384.10.2118/647-PACrossRefGoogle Scholar
Comolli, A., Hakoun, V. & Dentz, M. 2019 Mechanisms, upscaling, and prediction of anomalous dispersion in heterogeneous porous media. Water Resour. Res. 55 (10), 81978222.10.1029/2019WR024919CrossRefGoogle Scholar
Comolli, A., Hidalgo, J. J., Moussey, C. & Dentz, M. 2016 Non-Fickian transport under heterogeneous advection and mobile-immobile mass transfer. Transp. Porous Med. 115 (2), 265289.10.1007/s11242-016-0727-6CrossRefGoogle Scholar
De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A. M., Bolster, D. & Davy, P. 2013 Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110 (18), 184502.10.1103/PhysRevLett.110.184502CrossRefGoogle ScholarPubMed
Delay, F. & Bodin, J. 2001 Time domain random walk method to simulate transport by advection-diffusion and matrix diffusion in fracture networks. Geophys. Res. Lett. 28 (21), 40514054.10.1029/2001GL013698CrossRefGoogle Scholar
Deng, Z.-Q., Singh, V. P. & Bengtsson, L. 2001 Longitudinal dispersion coefficient in straight rivers. J. Hydraul. Engng ASCE 127 (11), 919927.10.1061/(ASCE)0733-9429(2001)127:11(919)CrossRefGoogle Scholar
Dentz, M., Cortis, A., Scher, H. & Berkowitz, B. 2004 Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27 (2), 155173.10.1016/j.advwatres.2003.11.002CrossRefGoogle Scholar
Dentz, M., Kang, P. K., Comolli, A., Le Borgne, T. & Lester, D. R. 2016 Continuous time random walks for the evolution of Lagrangian velocities. Phys. Rev. Fluids 1 (7), 074004.10.1103/PhysRevFluids.1.074004CrossRefGoogle Scholar
Feller, W. 2008 An Introduction to Probability Theory and its Applications, vol. 2. John Wiley and Sons.Google Scholar
Haggerty, R. & Gorelick, S. M. 1995 Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour. Res. 31 (10), 23832400.10.1029/95WR10583CrossRefGoogle Scholar
Holzner, M., Morales, V. L., Willmann, M. & Dentz, M. 2015 Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E 92 (1), 013015.CrossRefGoogle ScholarPubMed
Hörmander, L. 2015 The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Springer.Google Scholar
Icardi, M. & Dentz, M. 2020 Probability density function (PDF) models for particle transport in porous media. Intl J. Geomath. 11 (1), 117.10.1007/s13137-020-00153-zCrossRefGoogle Scholar
Kandhai, D., Hlushkou, D., Hoekstra, A. G., Sloot, P. M. A., Van As, H. & Tallarek, U. 2002 Influence of stagnant zones on transient and asymptotic dispersion in macroscopically homogeneous porous media. Phys. Rev. Lett. 88 (23), 234501.10.1103/PhysRevLett.88.234501CrossRefGoogle ScholarPubMed
Kang, P. K., De Anna, P., Nunes, J. P., Bijeljic, B., Blunt, M. J. & Juanes, R. 2014 Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media. Geophys. Res. Lett. 41 (17), 61846190.10.1002/2014GL061475CrossRefGoogle Scholar
Kang, P. K., Dentz, M., Le Borgne, T. & Juanes, R. 2011 Spatial Markov model of anomalous transport through random lattice networks. Phys. Rev. Lett. 107 (18), 180602.10.1103/PhysRevLett.107.180602CrossRefGoogle ScholarPubMed
Kang, P. K., Dentz, M., Le Borgne, T., Lee, S. & Juanes, R. 2017 Anomalous transport in disordered fracture networks: spatial Markov model for dispersion with variable injection modes. Adv. Water Resour. 106, 8094.10.1016/j.advwatres.2017.03.024CrossRefGoogle Scholar
Kang, P. K., Le Borgne, T., Dentz, M., Bour, O. & Juanes, R. 2015 Impact of velocity correlation and distribution on transport in fractured media: field evidence and theoretical model. Water Resour. Res. 51 (2), 940959.10.1002/2014WR015799CrossRefGoogle Scholar
Kim, J. S. & Kang, P. K. 2020 Anomalous transport through free-flow-porous media interface: pore-scale simulation and predictive modeling. Adv. Water Resour. 135, 103467.CrossRefGoogle Scholar
Klages, R., Radons, G. & Sokolov, I. M. 2008 Anomalous Transport: Foundations and Applications. John Wiley and Sons.10.1002/9783527622979CrossRefGoogle Scholar
Koponen, A., Kataja, M. & Timonen, J. V. 1996 Tortuous flow in porous media. Phys. Rev. E 54 (1), 406.10.1103/PhysRevE.54.406CrossRefGoogle ScholarPubMed
Kubo, R., Toda, M. & Hashitsume, N. 1985 Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer.10.1007/978-3-642-96701-6CrossRefGoogle Scholar
Le Borgne, T., Dentz, M. & Carrera, J. 2008 Spatial Markov processes for modeling Lagrangian particle dynamics in heterogeneous porous media. Phys. Rev. E 78 (2), 026308.10.1103/PhysRevE.78.026308CrossRefGoogle ScholarPubMed
McCarthy, J. F. 1993 Continuous-time random walks on random media. J. Phys. A 26 (11), 24952503.CrossRefGoogle Scholar
Meerschaert, M. M. & Sikorskii, A. 2012 Stochastic Models for Fractional Calculus, vol. 43. Walter de Gruyter.Google Scholar
Metzler, R. & Klafter, J. 2000 The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (1), 177.10.1016/S0370-1573(00)00070-3CrossRefGoogle Scholar
Meyer, D. W. & Saggini, F. 2016 Testing the Markov hypothesis in fluid flows. Phys. Rev. E 93 (5), 053103.10.1103/PhysRevE.93.053103CrossRefGoogle ScholarPubMed
Meyer, D. W. & Tchelepi, H. A. 2010 Particle-based transport model with Markovian velocity processes for tracer dispersion in highly heterogeneous porous media. Water Resour. Res. 46 (11), W11552.10.1029/2009WR008925CrossRefGoogle Scholar
Painter, S., Cvetkovic, V., Mancillas, J. & Pensado, O. 2008 Time domain particle tracking methods for simulating transport with retention and first-order transformation. Water Resour. Res. 44 (1), W01406.10.1029/2007WR005944CrossRefGoogle Scholar
Pope, S. B. 2011 Simple models of turbulent flows. Phys. Fluids 23 (1), 011301.10.1063/1.3531744CrossRefGoogle Scholar
Puyguiraud, A., Gouze, P. & Dentz, M. 2019 a Stochastic dynamics of Lagrangian pore-scale velocities in three-dimensional porous media. Water Resour. Res. 55 (2), 11961217.10.1029/2018WR023702CrossRefGoogle Scholar
Puyguiraud, A., Gouze, P. & Dentz, M. 2019 b Upscaling of anomalous pore-scale dispersion. Transp. Porous Med. 128 (2), 837855.10.1007/s11242-019-01273-3CrossRefGoogle Scholar
Russian, A., Dentz, M. & Gouze, P. 2016 Time domain random walks for hydrodynamic transport in heterogeneous media. Water Resour. Res. 52 (5), 33093323.CrossRefGoogle Scholar
Sallès, J., Thovert, J.-F., Delannay, R., Prevors, L., Auriault, J.-L. & Adler, P. M. 1993 Taylor dispersion in porous media. Determination of the dispersion tensor. Phys. Fluids A 5 (10), 23482376.10.1063/1.858751CrossRefGoogle Scholar
Scher, H. & Lax, M. 1973 Stochastic transport in a disordered solid. I. Theory. Phys. Rev. B 7 (10), 4491.10.1103/PhysRevB.7.4491CrossRefGoogle Scholar
Sherman, T., Fakhari, A., Miller, S., Singha, K. & Bolster, D. 2017 Parameterizing the spatial Markov model from breakthrough curve data alone. Water Resour. Res. 53 (12), 1088810898.CrossRefGoogle Scholar
Sherman, T., Paster, A., Porta, G. & Bolster, D. 2019 A spatial Markov model for upscaling transport of adsorbing-desorbing solutes. J. Contam. Hydrol. 222, 3140.10.1016/j.jconhyd.2019.02.003CrossRefGoogle ScholarPubMed
Sund, N., Aquino, T. & Bolster, D. 2019 Effective models for transport in complex heterogeneous hydrologic systems. In Encyclopedia of Water: Science, Technology, and Society (ed. P. Maurice). John Wiley and Sons.CrossRefGoogle Scholar
Sund, N., Bolster, D., Mattis, S. & Dawson, C. 2015 Pre-asymptotic transport upscaling in inertial and unsteady flows through porous media. Transp. Porous Med. 109 (2), 411432.CrossRefGoogle Scholar
Sund, N., Porta, G., Bolster, D. & Parashar, R. 2017 a A Lagrangian transport Eulerian reaction spatial (LATERS) Markov model for prediction of effective bimolecular reactive transport. Water Resour. Res. 53 (11), 90409058.10.1002/2017WR020821CrossRefGoogle Scholar
Sund, N. L., Porta, G. M. & Bolster, D. 2017 b Upscaling of dilution and mixing using a trajectory based spatial Markov random walk model in a periodic flow domain. Adv. Water Resour. 103, 7685.10.1016/j.advwatres.2017.02.018CrossRefGoogle Scholar
Uhlenbeck, G. E. & Ornstein, L. S. 1930 On the theory of the Brownian motion. Phys. Rev. 36 (5), 823.10.1103/PhysRev.36.823CrossRefGoogle Scholar
Wright, E. E., Sund, N. L., Richter, D. H., Porta, G. M. & Bolster, D. 2019 Upscaling mixing in highly heterogeneous porous media via a spatial Markov model. Water 11 (1), 53.10.3390/w11010053CrossRefGoogle Scholar