Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T03:53:41.073Z Has data issue: false hasContentIssue false

Disruptive bubble behaviour leading to microstructure damage in an ultrasonic field

Published online by Cambridge University Press:  09 June 2014

Tae-Hong Kim
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea
Ho-Young Kim*
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea
*
Email address for correspondence: hyk@snu.ac.kr

Abstract

Bubble oscillations play a crucial role in ultrasonic cleaning, a process by which micro- and nanoscale contaminant particles are removed from solid surfaces, such as semiconductor wafers, photomasks and membranes. Although it is well known that the ultrasonic cleaning may damage the functional patterns of ever-shrinking size in current manufacturing technology while removing dust and debris, the mechanisms leading to such damage have been elusive. Here we report observations of the dynamics of bubbles that yield microstructure damage under a continuous ultrasonic field via high-speed imaging. We find that the bubble behaviour can be classified into four types, namely volume oscillation, shape oscillation, splitting and chaotic oscillation, depending on the acoustic pressure and bubble size. This allows us to construct a regime map that can predict the bubble behaviour near a wall based on the experimental parameters. Our visualization experiments reveal that damage of microwalls and microcantilevers arises due to either splitting small bubbles or chaotically oscillating large bubbles in the ultrasonic field, with the forces generated by them quantitatively measured.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belova, V., Gorin, D. A., Shchukin, D. G. & Möhwald, H. 2011 Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surface. ACS Appl. Mater. Interfaces 3, 417425.Google Scholar
Benjamin, T. B. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221240.Google Scholar
Brujan, E. A., Ikeda, T., Yoshinaka, K. & Matsumoto, Y. 2011 The final stage of the collapse of a cloud of bubbles close to a rigid boundary. Ultrason. Sonochem. 18, 5964.Google Scholar
Brujan, E. A., Nahen, K., Schmidt, P. & Vogel, A. 2001 Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 251281.Google Scholar
Busnaina, A. A. & Gale, G. W. 1997 Removal of silica particles from silicon substrates using megasonic cleaning. Particul. Sci. Technol. 15, 361369.Google Scholar
Chang, S.-W., Oh, J., Boles, S. T. & Thompson, C. V. 2010 Fabrication of silicon nanopillar-based nanocapacitor arrays. Appl. Phys. Lett. 96, 153108.Google Scholar
Chen, D., Weavers, L. K. & Walker, H. W. 2006 Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors. Ultrason. Sonochem. 13, 379387.Google Scholar
Chen, H., Li, X., Wan, M. & Wang, s. 2009 High-speed observation of cavitation bubble clouds near a tissue boundary in high-intensity focused ultrasound fields. Ultrasonics 49, 289292.Google Scholar
Crum, L. A. 1975 Bjerknes forces on bubbles in a stationary sound field. J. Acoust. Soc. Am. 57, 13631370.CrossRefGoogle Scholar
Crum, L. A. 1979 Surface oscillations and jet development in pulsating bubble. J. Phys. Colloq. 40, 285288.CrossRefGoogle Scholar
Dijkink, R. & Ohl, C.-D. 2008 Measurement of cavitation induced wall shear stress. Appl. Phys. Lett. 93, 254107.Google Scholar
Dollet, B., van der Meer, S. M., Garbin, V. & de Jong, N. 2008 Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound Med. Biol. 34, 14651473.Google Scholar
Eller, A. I. & Crum, L. A. 1970 Instability of the motion of a pulsating bubble in a sound field. J. Acoust. Soc. Am. 47, 762767.Google Scholar
Francescutto, A. & Nabergoj, R. 1978 Pulsation amplitude threshold for surface waves on oscillating bubbles. Acta Acust. United Ac. 41, 215220.Google Scholar
Gallego-Juarez, J. A., Riera, E., Acosta, V., Rodríguez, G. & Blanco, A. 2010 Ultrasonic system for continuous washing of textiles in liquid layers. Ultrason. Sonochem. 17, 234238.Google Scholar
Garnett, E. & Yang, P. 2010 Light trapping in silicon nanowire solar cells. Nano Lett. 10, 10821087.Google Scholar
Gonzalez-Avila, S. R., Huang, X., Quinto-Su, P. A., Wu, T. & Ohl, C.-D. 2011 Motion of micrometer sized spherical particles exposed to a transient radial flow: attraction, repulsion, and rotation. Phys. Rev. Lett. 107, 074503.Google Scholar
Henry, M. D., Walavalkar, S., Homyk, A. & Scherer, A. 2009 Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars. Nanotechnology 20, 255305.Google Scholar
Hickling, R. & Plesset, M. S. 1964 Collapse and rebound of a spherical bubble in water. Phys. Fluids 7, 714.Google Scholar
Holsteyns, F., Lee, K., Graf, S., Palmans, R., Vereecke, G. & Mertens, P. W. 2005 Megasonics: a cavitation driven process. Solid State Phenom. 103–104, 159162.Google Scholar
Holt, R. G. & Gaitan, D. F. 1996 Observation of stability boundaries in the parameter space of single bubble sonoluminescence. Phys. Rev. Lett. 77, 37913794.CrossRefGoogle ScholarPubMed
Ishida, H., Nuntadusit, C., Kimoto, H., Nakagawa, T. & Yamamoto, T.2001 Cavitation bubble behavior near solid boundaries. In Proceedings CAV2001 Fourth International Symposium on Cavitation, California Institute of Technology, Pasadena, CA.Google Scholar
Kim, W., Kim, T.-H., Choi, J. & Kim, H.-Y. 2009 Mechanism of particle removal by megasonic waves. Appl. Phys. Lett. 94, 081908.Google Scholar
Kim, W., Park, K., Oh, J., Choi, J. & Kim, H.-Y. 2010 Visualization and minimization of disruptive bubble behavior in ultrasonic field. Utrasonics 50, 798802.Google Scholar
Kornfeld, M. & Suvorov, L. 1944 On the destructive action of cavitation. J. Appl. Phys. 15, 495506.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Lamminen, M. O., Walker, H. W. & Weavers, L. K. 2004 Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J. Membr. Sci. 273, 213223.Google Scholar
Lauterborn, W. & Hentschel, W. 1985 Cavitation bubble dynamics studied by high-speed photography and holography: part one. Ultrasonics 23, 260268.CrossRefGoogle Scholar
Lauterborn, W. & Ohl, C.-D. 1997 Cavitation bubble dynamics. Ultrason. Sonochem. 4, 6575.Google Scholar
Leighton, T. G. 1994 The Acoustic Bubble. Academic.Google Scholar
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.CrossRefGoogle Scholar
Mettin, R., Akhatov, I., Parlitz, U., Ohl, C. D. & Lauterborn, W. 1997 Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys. Rev. E 56, 29242931.Google Scholar
Minnaert, M. 1933 On musical air bubbles and the sounds of running water. Phil. Mag. 16, 235248.Google Scholar
Naudé, C. F. & Ellis, A. T. 1961 On the mechanism of cavitation damage by nonhemispherical cavities in contact with a solid boundary. Trans. ASME D: J. Basic Engng 83, 648656.Google Scholar
Ohl, C.-D., Kurz, T., Geisler, R., Lindau, O. & Lauterborn, W. 1999 Bubble dynamic, shock waves and sonoluminescence. Phil. Trans. R. Soc. Lond. A 357, 269294.Google Scholar
Pecha, R. & Gompf, B. 2000 Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Phys. Rev. Lett. 84, 13281330.CrossRefGoogle ScholarPubMed
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.Google Scholar
Prabowo, F. & Ohl, C.-D. 2011 Surface oscillation and jetting from surface attached acoustic driven bubbles. Utrason. Sonochem. 18, 431435.Google Scholar
Sader, J. E. 1998 Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84, 6476.Google Scholar
Shaw, S. J. & Spelt, P. D. M. 2010 Shock emssion from collapsing gas bubbles. J. Fluid Mech. 646, 363373.Google Scholar
Shima, A., Takayama, K. & Tomita, Y. 1983 Mechanism of impact pressure generation from spark-generated bubble collapse near a wall. AIAA J. 21, 5559.Google Scholar
Shutler, N. D. & Mesler, R. B. 1965 A photographic study of the dynamics and damage capabilities of bubbles collapsing near solid boundaries. Trans. ASME D: J. Basic Engng 87, 648656.Google Scholar
Strasberg, M. 1953 The pulsation frequency of nonspherical gas bubbles in liquids. J. Acoust. Soc. Am. 25, 536537.Google Scholar
Suwito, W., Dunn, M. L., Cunningham, S. J. & Read, D. T. 1999 Elastic moduli, strength, and fracture initiation at sharp notches in etched single crystal silicon microstructure. J. Appl. Phys. 85, 35193534.Google Scholar
Timoshenko, S. P. & Goodier, J. N. 1970 Theory of Elasticity. McGraw-Hill.Google Scholar
Tomita, H., Inukai, M., Umezawa, K. & Ji, L. 2009 Direct observation of single bubble cavitation damage for MHz cleaning. Solid State Phenom. 145–146, 36.Google Scholar
Tomita, Y. & Shima, A. 1986 Mechanism of implusive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.Google Scholar
Versluis, M., Goertz, D. E., Palanchon, P., Heitman, I. L., van der Meer, S. M., Dollet, B., de Jong, N. & Lohse, D. 2010 Microbubble shape oscillations excited through ultrasonic parametric driving. Phys. Rev. E 82, 026321.Google Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.Google Scholar
Wagterveld, R. M., Boels, L., Mayer, M. J. & Witkamp, G. J. 2011 Visualization of acoustic cavitation effects on suspended calcite crystal. Ultrason. Sonochem. 18, 216225.Google Scholar
Wu, B., Kumar, A. & Pamarthy, S. 2010 High-aspect-ratio silicon etch: a review. J. Appl. Phys. 108, 051101.CrossRefGoogle Scholar
Zhong, P., Lin, H., Xi, X., Zhu, S. & Bhogte, E. S. 1999 Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study. J. Acoust. Soc. Am. 105, 19972009.Google Scholar