Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T03:40:36.922Z Has data issue: false hasContentIssue false

Dynamic behaviour of buoyant high viscosity droplets rising in a quiescent liquid

Published online by Cambridge University Press:  04 August 2015

C. Albert
Affiliation:
Technische Universität Darmstadt, Center of Smart Interfaces, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
J. Kromer
Affiliation:
Technische Universität Darmstadt, Center of Smart Interfaces, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany Graduate School Computational Engineering, Technische Universität Darmstadt, Dolivostraße 10, 64293 Darmstadt, Germany
A. M. Robertson
Affiliation:
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
D. Bothe*
Affiliation:
Technische Universität Darmstadt, Center of Smart Interfaces, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany Graduate School Computational Engineering, Technische Universität Darmstadt, Dolivostraße 10, 64293 Darmstadt, Germany Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289 Darmstadt, Germany
*
Email address for correspondence: bothe@csi.tu-darmstadt.de

Abstract

The present paper initiates a systematic computational analysis of the rise dynamics of high viscosity droplets in a viscous ambient liquid. This represents a relevant intermediate case between free rigid particles and bubbles since their shape adjusts to outer forces while almost no inner circulation is present. As a prototype system, we study corn oil droplets rising in pure water with diameters ranging from 0.5 to 16 mm. Since we are interested in the droplet dynamics from the viewpoint of a bifurcation scenario with increasingly complex droplet behaviour, we perform fully three-dimensional numerical simulations, employing the in-house volume-of-fluid (VOF)-code FS3D. The smallest droplets (0.5–2 mm) rise in steady vertical paths, where for the smallest droplet (0.5 mm) the flow field, as well as the terminal velocity, can be described by the Taylor and Acrivos approximate solution, despite the Reynolds number being well above one. Larger droplets (3.2 mm) rise in an oblique path and display a bifid wake, and those with diameters in the range (3.7–8 mm) rise in intermittently oblique paths, showing an intermittent bifid wake of alternating vorticity. The droplets’ shapes in this range change from spherical into oblate ellipsoids of increasing eccentricity, followed by bi-ellipsoidal shapes with higher curvature on the downstream side. Even larger droplets (10–16 mm) rise in oscillatory, essentially vertical paths with drastically different wake structures, including deadzones and aperiodic or periodic vortex shedding. The largest considered droplets (diameter of 14 and 16 mm) display significant shape oscillations and vortex shedding is accompanied by a complex evolution of coherent vortex structures. Their rise paths are best described as zigzagging, but the bifurcation scenario seems to be substantially different from that leading to the zigzagging of air bubbles. In contrast to the rise behaviour of bubbles, helical paths are not observed in the present study.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelouahab, M. & Gatignol, R. 2011 A new approach for computation of drop terminal velocity in stagnant medium. Chem. Engng Sci. 66, 15231535.CrossRefGoogle Scholar
Abi Chebel, N., Vejražka, J., Masbernat, O. & Risso, F. 2012 Shape oscillations of an oil drop rising in water: effect of surface contamination. J. Fluid Mech. 702, 533542.CrossRefGoogle Scholar
Albert, C., Raach, H. & Bothe, D. 2012 Influence of surface tension models on the hydrodynamics of wavy laminar falling films in volume of fluid-simulations. Intl J. Multiphase Flow 43, 6671.CrossRefGoogle Scholar
Albert, C., Tezuka, A. & Bothe, D. 2014 Global linear stability analysis of falling films with in- and outlet. J. Fluid Mech. 745, 444486.Google Scholar
Balmino, G. 1994 Gravitational potential harmonics from the shape of an homogeneous body. Celestial Mech. Dyn. Astron. 60, 331364.CrossRefGoogle Scholar
Bhaga, D. & Weber, M. E. 1981 Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech. 105 (1), 6185.Google Scholar
Blanco, A. & Magnaudet, J. 1995 The structure of the axisymmetric high-Reynolds number flow around an ellipsoidal bubble of fixed shape. Phys. Fluids 7, 12651274.Google Scholar
Bothe, D. & Fleckenstein, S. 2013 A volume-of-fluid-based method for mass transfer processes at fluid particles. Chem. Engng Sci. 101 (0), 283302.Google Scholar
Bothe, D., Schmidtke, M. & Warnecke, H.-J. 2006 VOF-simulation of the lift force for single bubbles in a simple shear flow. Chem. Engng Technol. 29 (9), 10481053.Google Scholar
Boyling, J. B. 1979 A short proof of the pi theorem of dimensional analysis. Z. Angew. Math. Phys. 30, 531533.Google Scholar
Bozzano, G. & Dente, M. 2014 Dissolution of $\text{CO}_{2}$ and $\text{CH}_{4}$ bubbles and drops rising from the deep ocean. Ind. Engng Chem. Res. 53, 92729281.CrossRefGoogle Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modelling surface tension. J. Comput. Phys. 100 (2), 335354.Google Scholar
Brewer, P. G., Chen, B., Warzinski, R., Baggeroer, A., Peltzer, E. T., Dunk, R. M. & Walz, P. 2006 Three-dimensional acoustic monitoring and modelling of a deep-sea $\text{CO}_{2}$ droplet cloud. Geophys. Res. Lett. 33, L23607.CrossRefGoogle Scholar
Brewer, P. G., Peltzer, E. T., Friederich, G. & Rehder, G. 2002 Experimental determination of the fate of rising $\text{CO}_{2}$ droplets in seawater. Environ. Sci. Technol. 36, 54415446.CrossRefGoogle Scholar
Cano-Lozano, J. C., Bohorquez, P. & Martínez-Bazán, C. 2013 Wake instability of a fixed axisymmetric bubble of realistic shape. Intl J. Multiphase Flow 51, 1121.Google Scholar
Chester, W. & Breach, D. R. 1969 On the flow past a sphere at low Reynolds number. J. Fluid Mech. 37, 751760.CrossRefGoogle Scholar
Clift, R., Grace, J. R. & Weber, M. E. 2005 Bubbles, Drops and Particles Academic. Dover.Google Scholar
Dandy, D. S. & Leal, L. G. 1986 Boundary-layer separation from a smooth slip surface. Phys. Fluids 29, 13601366.CrossRefGoogle Scholar
De Vries, A. W. G., Biesheuvel, A. & Van Wijngaarden, L. 2002 Notes on the path and wake of a gas bubble rising in pure water. Intl J. Multiphase Flow 28 (11), 18231835.Google Scholar
Duineveld, P. C. 1995 The rise velocity and shape of bubbles in pure water at high Reynolds number. J. Fluid Mech. 292, 325332.Google Scholar
Edwards, D. A., Brenner, H. & Wasan, D. T. 1991 Interfacial Transport Processes and Rheology. Butterworth-Heinemann.Google Scholar
Ellingsen, K. & Risso, F. 2001 On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. J. Fluid Mech. 440, 235268.Google Scholar
Fleckenstein, S. & Bothe, D. 2013 Simplified modelling of the influence of surfactants on the rise of bubbles in VOF-simulations. Chem. Engng Sci. 102, 514523.Google Scholar
Focke, C. & Bothe, D. 2012 Direct numerical simulation of binary off-center collisions of shear thinning droplets at high Weber numbers. Phys. Fluids 24 (7), 073105.Google Scholar
Focke, C., Kuschel, M., Sommerfeld, M. & Bothe, D. 2013 Collision between high and low viscosity droplets: direct numerical simulations and experiments. Intl J. Multiphase Flow 56, 8192.CrossRefGoogle Scholar
Francois, M. M.2002 Computations of drop dynamics with heat transfer. PhD thesis, University of Florida.Google Scholar
Gangstø, R., Haugan, P. M. & Alendal, G. 2005 Parameterization of drag and dissolution of rising $\text{CO}_{2}$ drops in seawater. Geophys. Res. Lett. 32 (2), L10612.CrossRefGoogle Scholar
Goldstein, S. 1929 The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers. Proc. R. Soc. Lond. A 123 (791), 225235.Google Scholar
Gotaas, C., Havelka, P., Jakobsen, H. A., Svendsen, H. F., Hase, M., Roth, N. & Weigand, B. 2007 Effect of viscosity on droplet–droplet collision outcome: experimental study and numerical comparison. Phys. Fluids 19, 117.Google Scholar
Greene, G. A., Irvine, T. F. Jr., Gyves, T. & Smith, T. 1993 Drag relationships for liquid droplets settling in a continuous liquid. AIChE J. 39 (1), 3741.Google Scholar
Hadamard, J. 1911 Mouvement permanent lent d’une sphere liquide et visqueuse dans un liquide visqueux. C. R. Acad. Sci. 152 (25), 17351738.Google Scholar
Haljasmaa, I. V.2006 On the drag of fluid and solid particles freely moving in a continuous medium. PhD thesis, School of Engineering, University of Pittsburg.Google Scholar
Harper, J. F. 1972 The motion of bubbles and drops through liquids. Adv. Appl. Mech. 12 (59), 59129.Google Scholar
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.Google Scholar
Horowitz, M. & Williamson, C. H. K. 2010 The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech. 651, 251294.Google Scholar
Ishii, M. & Hibiki, T. 2011 Thermo-Fluid Dynamics of Two-Phase Flow. Springer.Google Scholar
Jenny, M., Dusek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201239.Google Scholar
Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378 (1), 1970.CrossRefGoogle Scholar
Karamanev, D. G., Chavarie, C. & Mayer, R. C. 1996 Dynamics of the free rise of a light solid sphere in liquid. AIChE J. 42 (6), 17891792.CrossRefGoogle Scholar
Klee, A. J. & Treybal, R. E. 1956 Rate of rise or fall of liquid drops. AIChE J. 2 (4), 444447.Google Scholar
Koebe, M., Bothe, D. & Warnecke, H.-J.2003 Direct numerical simulation of air bubbles in water/glycerol mixtures: shapes and velocity fields. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, vol. 2, Paper No. FEDSM2003-45154, pp. 415–421.Google Scholar
LeClair, B. P., Hamielec, A. E., Pruppacher, H. R. & Hall, W. D. 1972 A theoretical and experimental study of the internal circulation in water drops falling at terminal velocity in air. J. Atmos. Sci. 29, 728740.Google Scholar
Lunde, K. & Perkins, R. J. 1998 Shape oscillations of rising bubbles. In Fascination of Fluid Dynamics, pp. 387408. Springer.Google Scholar
Ma, C. & Bothe, D. 2011 Direct numerical simulation of thermocapillary flow based on the volume of fluid method. Intl J. Multiphase Flow 37 (9), 10451058.Google Scholar
Ma, C. & Bothe, D. 2013 Numerical modelling of thermocapillary two-phase flows using a two-scalar approach for heat transfer. J. Comput. Phys. 233, 552573.Google Scholar
MacDonald, I. R., Leifer, I., Sassen, R., Stine, P., Mitchell, R. & Guinasso, N. Jr. 2002 Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids 2, 95107.Google Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659708.CrossRefGoogle Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.Google Scholar
Metz, B., Davidson, O., de Coninck, H. C., Loos, M. & Meyer, L. A.(Eds) 2005 IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press.Google Scholar
Moremedi, G. M. & Mason, D. P. 2010 Streamlines and detached wakes in steady flow past a spherical liquid drop. Math. Comput. Appl. 15 (4), 543557.Google Scholar
Mougin, G. & Magnaudet, J. 2001 Path instability of a rising bubble. Phys. Rev. Lett. 88 (1), 014502.Google Scholar
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254 (1), 323344.Google Scholar
North, E. W., Adams, E. E., Schlag, Z., Sherwood, C. R., He, R., Hyun, K. H. & Socolofsky, S. A. 2011 Simulating oil droplet dispersal from the deepwater horizon spill with a Lagrangian approach. In Monitoring and Modelling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise (ed. Liu, Y., MacFadyen, A., Ji, Z.-G. & Weisberg, R. H.), Geophysical Monograph Series, vol. 195, pp. 217226. American Geophysical Union.Google Scholar
Ohta, M., Yamaguchi, S., Yoshida, Y. & Sussman, M. 2010 The sensitivity of drop motion due to the density and viscosity ratio. Phys. Fluids 22, 072102.Google Scholar
Oliver, D. L. R. & Chung, J. N. 1987 Flow about a fluid sphere at low to moderate Reynolds numbers. J. Fluid Mech. 177 (4), 118.Google Scholar
Parkinson, L., Sedev, R., Fornasiero, D. & Ralston, J. 2008 The terminal rise velocity of 10– $100~{\rm\mu}\text{m}$ diameter bubbles in water. J. Colloid Interface Sci. 322 (1), 168172.Google Scholar
Pick, M., Picha, J. & Vyskocil, V. 1973 Theory of the Earth’s Gravity Field. Elsevier.Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.Google Scholar
Prosperetti, A. 2004 Bubbles. Phys. Fluids 16 (6), 18521865.Google Scholar
Proudman, I. & Pearson, J. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237262.CrossRefGoogle Scholar
Pruppacher, H. R. & Beard, K. V. 1970 A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. R. Meteorol. Soc. 96 (408), 247256.Google Scholar
Renardy, Y. & Renardy, M. 2002 PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method. J. Comput. Phys. 183 (2), 400421.CrossRefGoogle Scholar
Rider, W. J. & Kothe, D. B. 1998 Reconstructing volume tracking. J. Comput. Phys. 141 (2), 112152.Google Scholar
Rieber, M.2004 Numerische modellierung der dynamik freier grenzflächen in zweiphasenströmungen. PhD thesis, University of Stuttgart.Google Scholar
Rieber, M. & Frohn, A. 1999 A numerical study on the mechanism of splashing. Intl J. Heat Fluid Flow 20 (5), 455461.Google Scholar
Rivkind, V. Y. & Ryskin, G. M. 1976 Flow structure in motion of a spherical drop in a fluid medium at intermediate Reynolds numbers. Fluid Dyn. 11 (1), 512.Google Scholar
Rybczynski, W. 1911 Uber die fortschreitende bewegung einer flussigen kugel in einem zahen medium. Bull. Acad. Sci. Cracovie A 1, 4046.Google Scholar
Sanada, T., Shirota, M. & Watanabe, M. 2007 Bubble wake visualization by using photochromic dye. Chem. Engng Sci. 62 (24), 72647273.Google Scholar
Schroeder, R. R. & Kintner, R. C. 1965 Oscillations of drops falling in a liquid field. AIChE J. 11 (1), 58.Google Scholar
Slattery, J. C. 1999 Advanced Transport Phenomena. Cambridge University Press.Google Scholar
Sumner, B. S. & Moore, F. K. 1969 Comments on the Nature of the Outside Boundary Layer on a Liquid Sphere in a Steady, Uniform Stream. National Aeronautics and Space Administration.Google Scholar
Taylor, T. D. & Acrivos, A. 1964 On the deformation and drag of a falling viscous drop at low Reynolds number. J. Fluid Mech. 18 (03), 466476.Google Scholar
Tchoufag, J., Magnaudet, J. & Fabre, D. 2013 Linear stability and sensitivity of the flow past a fixed oblate spheroidal bubble. Phys. Fluids 25 (5), 054108.CrossRefGoogle Scholar
Tezuka, A. & Suzuki, K. 2006 Three dimensional global linear stability analysis of flow around a spheroid. AIAA J. 44 (8), 16971708.Google Scholar
Thorsen, G., Stordalen, R. M. & Terjesen, S. G. 1968 On the terminal velocity of circulating and oscillating liquid drops. Chem. Engng Sci. 23, 413426.Google Scholar
Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.Google Scholar
Tryggvason, G., Bunner, B., Ebrat, O. & Tauber, W. 1998 Computations of multiphase flows by a finite difference/front tracking method. I. Multi-fluid flows. In 29th Computational Fluid Dynamics Lecture Series, Rhode-Saint-Genese. von Karman Institute for Fluid Dynamics.Google Scholar
Tsoulis, D.1999 Spherical harmonic computations with topographic/isostatic coefficients. IAPG/FESG-Schriftenreihe 3. Institut für Astronomische und Physikalische Geodäsie, Forschungseinrichtung Satellitengeodäsie.Google Scholar
Veldhuis, C. H. J. & Biesheuvel, A. 2007 An experimental study of the regimes of motion of spheres falling or ascending freely in a Newtonian fluid. Intl J. Multiphase Flow 33 (10), 10741087.Google Scholar
Veldhuis, C. H. J., Biesheuvel, A. & Van Wijngaarden, L. 2008 Shape oscillations on bubbles rising in clean and in tap water. Phys. Fluids 20 (4), 040705.Google Scholar
Wegener, M., Paul, N. & Kraume, M. 2014 Fluid dynamics and mass transfer at single droplets in liquid/liquid systems. Intl J. Heat Mass Transfer 71, 475495.Google Scholar
Weirich, D., Köhne, M. & Bothe, D. 2014 Efficient computation of the flow around single fluid particles using an artificial boundary condition. Intl J. Numer. Meth. Fluids 75 (3), 184204.Google Scholar
Winnikow, S. & Chao, B. T. 1966 Droplet motion in purified systems. Phys. Fluids 9, 5061.Google Scholar
Wua, M. & Gharib, M. 2002 Experimental studies on the shape and path of small air bubbles rising in clean water. Phys. Fluids 14, L49L52.Google Scholar
Yang, B. & Prosperetti, A. 2007 Linear stability of the flow past a spheroidal bubble. J. Fluid Mech. 582, 5378.Google Scholar