Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T22:55:27.491Z Has data issue: false hasContentIssue false

Effects of electric charge on osmotic flow across periodically arranged circular cylinders

Published online by Cambridge University Press:  27 September 2010

MASAKO SUGIHARA-SEKI*
Affiliation:
Department of Pure and Applied Physics, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
TAKESHI AKINAGA
Affiliation:
Department of Pure and Applied Physics, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
TOMOAKI ITANO
Affiliation:
Department of Pure and Applied Physics, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
*
Email address for correspondence: sekim@ipcku.kansai-u.ac.jp

Abstract

An electrostatic model is developed for osmotic flow across a layer consisting of identical circular cylinders with a fixed surface charge, aligned parallel to each other so as to form an ordered hexagonal arrangement. The expression of the osmotic reflection coefficient is derived for spherical solutes with a fixed surface charge suspended in an electrolyte, based on low-Reynolds-number hydrodynamics and a continuum, point-charge description of the electric double layers. The repulsive electrostatic interaction between the surface charges with the same sign on the solute and the cylinders is shown to increase the exclusion region of solute from the cylinder surface, which enhances the osmotic flow. Applying the present model to the study of osmotic flow across the endothelial surface glycocalyx of capillary walls has revealed that this electrostatic model could account well for the reflection coefficients measured for charged macromolecules, such as albumin, in the physiological range of charge density and ion concentration.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamson, R. H., Huxley, V. H. & Curry, F. E. 1988 Single capillary permeability to proteins having similar size but different charge. Am. J. Physiol. 254, H304H312.Google Scholar
Akinaga, T., Sugihara-Seki, M. & Itano, T. 2008 Electrical charge effect on osmotic flow through pores. J. Phys. Soc. Japan 77, 053401.Google Scholar
Anderson, J. L. & Malone, D. M. 1974 Mechanism of osmotic flow in porous membranes. Biophys. J. 14, 957982.CrossRefGoogle ScholarPubMed
Bhalla, G. & Deen, W. M. 2009 Effects of charge on osmotic reflection coefficients of macromolecules in porous membranes. J. Colloid Interface Sci. 333, 363372.CrossRefGoogle ScholarPubMed
Curry, F. E. 1984 Mechanics and thermodynamics of transcapillary exchange. In Handbook of Physiology, Section 2: The Cardiovascular System (ed. Renkin, E. M. & Michel, C. C.), vol. 4, pp. 309374. American Physiological Society.Google Scholar
Curry, F. E., Rutledge, J. C. & Lenz, J. F. 1989 Modulation of microvessel wall charge by plasma glycoprotein orosomucoid. Am. J. Physiol. 257, H1354H1359.Google ScholarPubMed
Damiano, E. R. & Stace, T. M. 2002 A mechano-electrochemical model of radial deformation of the capillary glycocalyx. Biophys. J. 82, 11531175.Google Scholar
Fu, B. M., Chen, B. & Chen, W. 2003 An electrodiffusion model for effects of surface glycocalyx layer on microvessel permeability. Am. J. Physiol. 284, H1240H1250.Google ScholarPubMed
Huxley, V. H. & Curry, F. E. 1991 Differential actions of albumin and plasma on capillary solute permeability. Am. J. Physiol. 260, H1645H1654.Google ScholarPubMed
Huxley, V. H., Curry, F. E. & Adamson, R. H. 1987 Quantitative fluorescence microscopy on single capillaries: α-lactalbumin transport. Am. J. Physiol. 252, H188H197.Google Scholar
Huxley, V. H., Curry, F. E., Powers, M. R. & Thipakorn, B. 1993 Differential action of plasma and albumin on transcapillary exchange of anionic solute. Am. J. Physiol. 264, H1428H1437.Google ScholarPubMed
Kedem, O. & Katchalsky, A. 1958 Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229246.CrossRefGoogle ScholarPubMed
Levin, Y. 2002 Electrostatic correlations: from plasma to biology. Rep. Prog. Phys. 65, 15771632.Google Scholar
Levitt, D. G. 1975 General continuum analysis of transport through pores. Part 1. Proof of Onsager's reciprocity postulate for uniform pore. Biophys. J. 15, 533551.Google Scholar
Likos, C. N. 2001 Effective interactions in soft condensed matter physics. Phys. Rep. 348, 267439.CrossRefGoogle Scholar
Michel, C. C. & Curry, F. E. 1999 Microvascular permeability. Physiol. Rev. 79, 703761.CrossRefGoogle ScholarPubMed
Michel, C. C. & Turner, M. R. 1981 The effects of molecular charge on the permeability of frog mesenteric capillaries to myoglobin. J. Phyisol. 316, 51P52P.Google Scholar
Pries, A. R., Secomb, T. W. & Gaehtgens, P. 2000 The endothelial surface layer. Pflügers Archiv: Eur. J. Physiol. 440, 653666.Google Scholar
Probstein, R. F. 2003 Physicochemical Hydrodynamics. Wiley.Google Scholar
Reiner, E. S. & Radke, C. J. 1990 Variational approach to the electrostatic free energy in charged colloidal suspensions: general theory for open systems. J. Chem. Soc. Faraday Trans. 86, 39013912.CrossRefGoogle Scholar
Reiner, E. S. & Radke, C. J. 1991 Electrostatic interactions in colloidal suspensions: tests of pairwise additivity. AIChE J. 37, 805824.Google Scholar
Reitsma, S., Slaaf, D. W., Vink, H., van Andvoort, M. A. M. J. & oude Egbrink, M. G. A. 2007 The endothelial glycocalyx: composition, functions, and visualization. Pflügers Archiv: Eur. J. Physiol. 454, 345359.CrossRefGoogle ScholarPubMed
Smith, F. G. III & Deen, W. M. 1980 Electrostatic double-layer interactions for spherical colloids in cylindrical pores. J. Colloid Interface Sci. 78, 444465.CrossRefGoogle Scholar
Smith, F. G. III & Deen, W. M. 1983 Electrostatic effects on the partitioning of spherical colloids between dilute bulk solution and cylindrical pores. J. Colloid Interface Sci. 91, 571590.Google Scholar
Sparrow, E. M. & Loeffler, A. L. Jr 1959 Longitudinal laminar flow between cylinders arranged in regular array. AIChE J. 5, 325330.Google Scholar
Squire, J. M., Chew, M., Nneji, G., Neal, C., Barry, J. & Michel, C. 2001 Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol. 136, 239255.Google Scholar
Stace, T. M. & Damiano, E. R. 2001 An electrochemical model of the transport of charged molecules through the capillary glycocalyx. Biophys. J. 80, 16701690.Google Scholar
Sugihara-Seki, M. 2006 Transport of spheres suspended in the fluid flowing between hexagonally arranged cylinders. J. Fluid Mech. 551, 309321.Google Scholar
Sugihara-Seki, M., Akinaga, T. & Itano, T. 2008 Flow across microvessel walls through the endothelial surface glycocalyx and the interendothelial cleft. J. Fluid Mech. 601, 229252.Google Scholar
Truskey, G. A., Yuan, F. & Katz, D. F. 2004 Transport Phenomena in Biological Systems. Pearson Education.Google Scholar
Ueda, A., Shimomura, M., Ikeda, M., Tanishita, R. & Yamaguchi, K. 2004 Effect of glycocalyx on shear-dependent albumin uptake in endothelial cells. Am. J. Physiol. 287, H2287H2294.Google Scholar
Verwey, E. J. W. & Overbeek, J. T. G. 1948 Theory of the Stability of Lyophobic Colloids. Dover.Google Scholar
Vink, H. & Duling, B. R. 1996 Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79, 581589.CrossRefGoogle ScholarPubMed
Vink, H. & Duling, B. R. 2000 Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am. J. Physiol. 278, H285H289.Google Scholar
Weinbaum, S., Tarbell, J. M. & Damiano, E. R. 2007 The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Engng 9, 121167.Google Scholar
Weinbaum, S., Zhang, X., Han, Y., Vink, H. & Cowin, S. C. 2003 Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl Acad. Sci. 100, 79887995.Google Scholar
Zhang, X., Curry, F. & Weinbaum, S. 2006 Mechanism of osmotic flow in a periodic fibre array. Am. J. Physiol. 290, H844H852.Google Scholar