Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T11:07:41.942Z Has data issue: false hasContentIssue false

Efficient aquatic locomotion using elastic propulsors with hybrid actuation

Published online by Cambridge University Press:  12 July 2021

Ersan Demirer
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
Oluwafikayo A. Oshinowo
Affiliation:
Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
Alexander Alexeev*
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
*
Email address for correspondence: alexander.alexeev@me.gatech.edu

Abstract

Using computational modelling, we probe the hydrodynamics of a bio-inspired elastic propulsor with hybrid actuation that oscillates at resonance in a Newtonian fluid. The propulsor is actuated by a heaving motion at the base and by an internal bending moment distributed along the propulsor length. The simulations reveal that by tuning the phase difference between the external and internal actuation, the propulsor thrust and free-swimming velocity can be regulated in a wide range while maintaining high efficiency. Furthermore, the hybrid propulsor outperforms propulsors with either of the actuation methods. The enhanced performance is associated with the emerging bending pattern maintaining large tip displacement with reduced centre-of-mass displacement. The results are useful for developing highly efficient robotic swimmers utilizing smart materials as propulsors with simplified design and operation.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alben, S., Witt, C., Baker, T.V., Anderson, E. & Lauder, G.V. 2012 Dynamics of freely swimming flexible foils. Phys. Fluids 24 (5), 051901.CrossRefGoogle Scholar
Anderson, J.M., Streitlien, K., Barrett, D.S. & Triantafyllou, M.S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.CrossRefGoogle Scholar
Cen, L. & Erturk, A. 2013 Bio-inspired aquatic robotics by untethered piezohydroelastic actuation. Bioinspir. Biomim. 8 (1), 016006.CrossRefGoogle ScholarPubMed
Chen, Z., Shatara, S. & Tan, X. 2009 Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite caudal fin. IEEE ASME Trans. Mechatron. 15 (3), 448459.CrossRefGoogle Scholar
Chen, Z., Um, T.I., Zhu, J. & Bart-Smith, H. 2011 Bio-inspired robotic cownose ray propelled by electroactive polymer pectoral fin. In ASME 2011 International Mechanical Engineering Congress and Exposition, pp. 817–824. American Society of Mechanical Engineers Digital Collection.CrossRefGoogle Scholar
Chu, W.-S., Lee, K.-T., Song, S.-H., Han, M.-W., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Park, Y.-J., Cho, K.-J. & Ahn, S.-H. 2012 Review of biomimetic underwater robots using smart actuators. Intl J. Precis. Engng Manuf. 13 (7), 12811292.CrossRefGoogle Scholar
Combes, S.A. & Daniel, T.L. 2001 Shape, flapping and flexion: wing and fin design for forward flight. J. Expl Biol. 204 (12), 20732085.CrossRefGoogle ScholarPubMed
Dai, H., Luo, H., de Sousa, P.J.S.A.F. & Doyle, J.F. 2012 Thrust performance of a flexible low-aspect-ratio pitching plate. Phys. Fluids 24 (10), 101903.CrossRefGoogle Scholar
Demirer, E., Wang, Y.-C., Erturk, A. & Alexeev, A. 2021 Effect of actuation method on hydrodynamics of elastic plates oscillating at resonance. J. Fluid Mech. 910, A4.CrossRefGoogle Scholar
Erturk, A. & Inman, D.J. 2011 Piezoelectric Energy Harvesting. John Wiley & Sons.CrossRefGoogle Scholar
Esposito, C.J., Tangorra, J.L., Flammang, B.E. & Lauder, G.V. 2012 A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance. J. Expl Biol. 215 (1), 5667.CrossRefGoogle ScholarPubMed
Fish, F.E. & Lauder, G.V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38, 193224.CrossRefGoogle Scholar
Flammang, B.E. & Lauder, G.V. 2009 Caudal fin shape modulation and control during acceleration, braking and backing maneuvers in bluegill sunfish, Lepomis macrochirus. J. Expl Biol. 212 (2), 277286.CrossRefGoogle ScholarPubMed
Heo, S., Wiguna, T., Park, H.C. & Goo, N.S. 2007 Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators. J. Bionic Engng 4 (3), 151158.CrossRefGoogle Scholar
Hoover, A.P., Cortez, R., Tytell, E.D. & Fauci, L.J. 2018 Swimming performance, resonance and shape evolution in heaving flexible panels. J. Fluid Mech. 847, 386416.CrossRefGoogle Scholar
Hu, H., Liu, J., Dukes, I. & Francis, G. 2006 Design of 3D swim patterns for autonomous robotic fish. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2406–2411.Google Scholar
Jayne, B.C. & Lauder, G.V. 1995 Speed effects on midline kinematics during steady undulatory swimming of largemouth bass, Micropterus salmoides. J. Expl Biol. 198 (2), 585602.CrossRefGoogle Scholar
Kolomenskiy, D., Moffatt, H.K., Farge, M. & Schneider, K. 2011 The Lighthill–Weis-Fogh clap–fling–sweep mechanism revisited. J. Fluid Mech. 676, 572606.CrossRefGoogle Scholar
Kopman, V., Laut, J., Acquaviva, F., Rizzo, A. & Porfiri, M. 2015 Dynamic modeling of a robotic fish propelled by a compliant tail. IEEE J. Ocean. Engng 40 (1), 209221.CrossRefGoogle Scholar
Ladd, A.J.C. & Verberg, R 2001 Lattice–Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104 (5–6), 11911251.CrossRefGoogle Scholar
Lauder, G.V. & Tangorra, J.L. 2015 Fish Locomotion: Biology and Robotics of Body and Fin-Based Movements, pp. 25–49. Springer.Google Scholar
Lauder, G.V. & Tytell, E.D. 2005 Hydrodynamics of undulatory propulsion. Fish Physiol. 23, 425468.CrossRefGoogle Scholar
Li, N., Liu, H. & Su, Y. 2017 Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion. PLoS ONE 12 (3), e0174740.CrossRefGoogle Scholar
Liu, H. & Aono, H. 2009 Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspir. Biomim. 4 (1), 015002.CrossRefGoogle Scholar
Mao, W. & Alexeev, A. 2014 Motion of spheroid particles in shear flow with inertia. J. Fluid Mech. 749, 145166.CrossRefGoogle Scholar
Marras, S. & Porfiri, M. 2012 Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. J. R. Soc. Interface 9 (73), 18561868.CrossRefGoogle ScholarPubMed
Mason, R. & Burdick, J.W. 2000 Experiments in carangiform robotic fish locomotion. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 1, pp. 428–435. IEEE.Google Scholar
Masoud, H. & Alexeev, A. 2010 Resonance of flexible flapping wings at low Reynolds number. Phys. Rev. E 81 (5), 056304.CrossRefGoogle ScholarPubMed
Masoud, H. & Alexeev, A. 2012 Efficient flapping flight using flexible wings oscillating at resonance. In Natural Locomotion in Fluids and on Surfaces, pp. 235–245. Springer.CrossRefGoogle Scholar
McHenry, M.J., Pell, C.A. & Long, J.H. 1995 Mechanical control of swimming speed: stiffness and axial wave form in undulating fish models. J. Expl Biol. 198 (11), 22932305.CrossRefGoogle ScholarPubMed
Michelin, S. & Llewellyn Smith, S.G. 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21 (7), 071902.CrossRefGoogle Scholar
Nabawy, M.R.A. & Crowther, W.J. 2016 Dynamic electromechanical coupling of piezoelectric bending actuators. Micromachines 7 (1), 12.CrossRefGoogle ScholarPubMed
Pabst, D.A. 2015 Springs in swimming animals. Am. Zool. 36 (6), 723735.CrossRefGoogle Scholar
Philen, M. & Neu, W. 2011 Hydrodynamic analysis, performance assessment, and actuator design of a flexible tail propulsor in an artificial alligator. Smart Mater. Struct. 20 (9), 094015.CrossRefGoogle Scholar
Piñeirua, M., Thiria, B. & Godoy-Diana, R. 2017 Modelling of an actuated elastic swimmer. J. Fluid Mech. 829, 731750.CrossRefGoogle Scholar
Quinn, D.B., Lauder, G.V. & Smits, A.J. 2014 Scaling the propulsive performance of heaving flexible panels. J. Fluid Mech. 738, 250267.CrossRefGoogle Scholar
Quinn, D.B., Lauder, G.V. & Smits, A.J. 2015 Maximizing the efficiency of a flexible propulsor using experimental optimization. J. Fluid Mech. 767, 430448.CrossRefGoogle Scholar
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. 108 (15), 59645969.CrossRefGoogle ScholarPubMed
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2013 Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming. J. R. Soc. Interface 10 (88), 20130667.CrossRefGoogle ScholarPubMed
Raspa, V., Ramananarivo, S., Thiria, B. & Godoy-Diana, R. 2014 Vortex-induced drag and the role of aspect ratio in undulatory swimmers. Phys. Fluids 26 (4), 041701.CrossRefGoogle Scholar
Richards, C.D., Anderson, M.J., Bahr, D.F. & Richards, R.F. 2004 Efficiency of energy conversion for devices containing a piezoelectric component. J. Micromech. Microeng. 14 (5), 717.CrossRefGoogle Scholar
Smits, A.J. 2019 Undulatory and oscillatory swimming. J. Fluid Mech. 874, P1.CrossRefGoogle Scholar
Sodano, H.A. 2003 Macro-fiber composites for sensing, actuation and power generation. PhD thesis, Virginia Tech.Google Scholar
Song, H.J., Choi, Y.-T., Wereley, N.M. & Purekar, A.S. 2010 Energy harvesting devices using macro-fiber composite materials. J. Intell. Mater. Syst. Struct. 21 (6), 647658.CrossRefGoogle Scholar
Steiger, K. & Mokrỳ, P. 2015 Finite element analysis of the macro fiber composite actuator: macroscopic elastic and piezoelectric properties and active control thereof by means of negative capacitance shunt circuit. Smart Mater. Struct. 24 (2), 025026.CrossRefGoogle Scholar
Su, Z., Yu, J., Tan, M. & Zhang, J. 2014 Implementing flexible and fast turning maneuvers of a multijoint robotic fish. IEEE ASME Trans. Mechatron. 19 (1), 329338.CrossRefGoogle Scholar
Tan, D. & Erturk, A. 2018 On the coupling of nonlinear macro-fiber composite piezoelectric cantilever dynamics with hydrodynamic loads. In Active and Passive Smart Structures and Integrated Systems XII (ed. A. Erturk), vol. 10595, pp. 166–174. International Society for Optics and Photonics, SPIE.CrossRefGoogle Scholar
Triantafyllou, M.S. & Triantafyllou, G.S. 1995 An efficient swimming machine. Sci. Am. 272 (3), 6470.CrossRefGoogle Scholar
Van Buren, T., Floryan, D. & Smits, A.J. 2019 Scaling and performance of simultaneously heaving and pitching foils. AIAA J. 57 (9), 36663677.CrossRefGoogle Scholar
Wang, Z., Hang, G., Li, J., Wang, Y. & Xiao, K. 2008 A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sens. Actuators A: Phys. 144 (2), 354360.CrossRefGoogle Scholar
Wardle, C.S.J.J., Videler, J. & Altringham, J. 1995 Tuning in to fish swimming waves: body form, swimming mode and muscle function. J. Expl Biol. 198 (8), 16291636.CrossRefGoogle ScholarPubMed
Weaver, W. Jr., Timoshenko, S.P. & Young, D.H. 1990 Vibration Problems in Engineering. John Wiley & Sons.Google Scholar
Williams, R.B., Inman, D.J. & Wilkie, W.K. 2006 Nonlinear response of the macro fiber composite actuator to monotonically increasing excitation voltage. J. Intell. Mater. Syst. Struct. 17 (7), 601608.CrossRefGoogle Scholar
Wu, Z.X., Yu, J.Z., Su, Z.S., Tan, M. & Li, Z.L. 2015 Towards an Esox lucius inspired multimodal robotic fish. Sci. China Inf. Sci. 58 (5), 113.Google Scholar
Yan, Q., Han, Z., Zhang, S.-W. & Yang, J. 2008 Parametric research of experiments on a carangiform robotic fish. J. Bionic Engng 5 (2), 95101.CrossRefGoogle Scholar
Yang, Y., Tang, L. & Li, H. 2009 Vibration energy harvesting using macro-fiber composites. Smart Mater. Struct. 18 (11), 115025.CrossRefGoogle Scholar
Yeh, P.D. & Alexeev, A. 2014 Free swimming of an elastic plate plunging at low Reynolds number. Phys. Fluids 26 (5), 053604.CrossRefGoogle Scholar
Yeh, P.D. & Alexeev, A. 2016 a Biomimetic flexible plate actuators are faster and more efficient with a passive attachment. Acta Mechanica Sin. 32 (6), 10011011.CrossRefGoogle Scholar
Yeh, P.D. & Alexeev, A. 2016 b Effect of aspect ratio in free-swimming plunging flexible plates. Comput. Fluids 124, 220225.CrossRefGoogle Scholar
Yeh, P.D., Demirer, E. & Alexeev, A. 2019 Turning strategies for plunging elastic plate propulsor. Phys. Rev. Fluids 4, 064101.CrossRefGoogle Scholar
Yeh, P.D., Li, Y. & Alexeev, A. 2017 Efficient swimming using flexible fins with tapered thickness. Phys. Rev. Fluids 2, 102101.CrossRefGoogle Scholar
Yu, J., Tan, M., Wang, S. & Chen, E. 2004 Development of a biomimetic robotic fish and its control algorithm. IEEE Trans. Syst. Man Cybern. 34 (4), 17981810.CrossRefGoogle ScholarPubMed
Supplementary material: File

Demirer et al. supplementary material

Demirer et al. supplementary material

Download Demirer et al. supplementary material(File)
File 3.9 MB