Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T19:25:25.289Z Has data issue: false hasContentIssue false

The evaporatively driven cloud-top mixing layer

Published online by Cambridge University Press:  27 July 2010

JUAN PEDRO MELLADO*
Affiliation:
Institut für Technische Verbrennung, RWTH Aachen University, Templergraben 64, 52056 Aachen, Germany
*
Present address: Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany. Email address for correspondence: jpmellado@itv.rwth-aachen.de

Abstract

Direct numerical simulations of the turbulent temporally evolving cloud-top mixing layer are used to investigate the role of evaporative cooling by isobaric mixing locally at the stratocumulus top. It is shown that the system develops a horizontal layered structure whose evolution is determined by molecular transport. A relatively thin inversion with a constant thickness h = κ/we is formed on top and travels upwards at a mean velocity we ≃ 0.1(κ |bsc2)1/3, where κ is the mixture-fraction diffusivity, bs < 0 is the buoyancy anomaly at saturation conditions χs and χc is the cross-over mixture fraction defining the interval of buoyancy reversing mixtures. A turbulent convection layer develops below and continuously broadens into the cloud (the lower saturated fluid). This turbulent layer approaches a self-preserving state that is characterized by the convection scales constructed from a constant reference buoyancy flux Bs = |bs|wes. Right underneath the inversion base, a transition or buffer zone is defined based on a strong local conversion of vertical to horizontal motion that leads to a cellular pattern and sheet-like plumes, as observed in cloud measurements and reported in other free-convection problems. The fluctuating saturation surface (instantaneous cloud top) is contained inside this intermediate region. Results show that the inversion is not broken due to the turbulent convection generated by the evaporative cooling, and the upward mean entrainment velocity we is negligibly small compared to the convection velocity scale w* of the turbulent layer and the corresponding growth rate into the cloud.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J., Ferreira, R. T. D. S. & Boberg, T. 1986 Turbulent thermal convection in wide horizontal layers. Exp. Fluids 4, 121141.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Albrecht, B. A., Penc, R. S. & Schubert, W. H. 1985 An observational study of cloud-topped mixed layers. J. Atmos. Sci. 42, 800822.2.0.CO;2>CrossRefGoogle Scholar
Asaeda, T. & Watanabe, K. 1989 The mechanism of heat transport in thermal convection at high Rayleigh numbers. Phys. Fluids A 1 (5), 861867.CrossRefGoogle Scholar
Bretherton, C. S. 1987 A theory for nonprecipitating moist convection between two parallel plates. Part 1. Thermodynamics and linear solutions. J. Atmos. Sci. 44, 18091827.2.0.CO;2>CrossRefGoogle Scholar
Caughey, S. J., Crease, B. A. & Roach, W. T. 1982 A field study of nocturnal stratocumulus. Part 2. Turbulence structure and entrainment. Q. J. R. Meteorol. Soc. 108, 125144.Google Scholar
Deardorff, J. W. 1970 Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci. 27, 12111213.2.0.CO;2>CrossRefGoogle Scholar
Deardorff, J. W. 1980 Cloud top entrainment instability. J. Atmos. Sci. 37, 131147.2.0.CO;2>CrossRefGoogle Scholar
Deardorff, J. W. & Willis, G. E. 1967 Investigation of turbulent thermal convection between horizontal plates. J. Fluid Mech. 28, 675704.Google Scholar
Faloona, I., Lenschow, D. H., Campos, T., Stevens, B., van Zanten, M., Bloomquist, B., Thorton, D., Bandy, A. & Gerber, H. 2005 Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci. 62, 32683284.CrossRefGoogle Scholar
Fernando, H. J. S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455493.CrossRefGoogle Scholar
Fernando, H. J. S. & Hunt, J. C. R. 1997 Turbulence, waves and mixing at shear-free density interfaces. Part 1. A theoretical model. J. Fluid Mech. 347, 197234.CrossRefGoogle Scholar
Flack, K. A., Saylor, J. R. & Smith, G. B. 2001 Near-surface turbulence for evaporative convection at an air/water interface. Phys. Fluids 13 (11), 33383345.CrossRefGoogle Scholar
Gerber, H., Malinowski, G., Frick, S. P., Brenguier, J.-L. & Burnet, F. 2005 Holes and entrainment in stratocumulus. J. Atmos. Sci. 62, 443459.Google Scholar
Goldstein, R. J. & Volino, R. J. 1995 Onset and development of natural convection above a suddenly heated horizontal surface. J. Heat Transfer 117, 884894.CrossRefGoogle Scholar
Haman, K. E. 2009 Simple approach to dynamics of entrainment interface layers and cloud holes in stratocumulus clouds. Q. J. R. Meteorol. Soc. 135, 93100.CrossRefGoogle Scholar
Haman, K. E., Malinowski, S. P., Kurowski, M. J., Gerber, H. & Brenguier, J.-L. 2007 Small-scale mixing processes at the top of a marine stratocumulus: a case study. Q. J. R. Meteorol. Soc. 133, 213226.CrossRefGoogle Scholar
Kerr, R. M. 2001 Energy budget in Rayleigh–Bénard convection. Phys. Rev. Lett. 87, 244502.CrossRefGoogle ScholarPubMed
Krueger, S. K. 1993 Linear eddy modeling of entrainment and mixing in stratus clouds. J. Atmos. Sci. 50, 30783090.2.0.CO;2>CrossRefGoogle Scholar
Kunnen, R. P. J., Geurts, B. J. & Clercx, H. J. H. 2009 Turbulence statistics and energy budget in rotating Rayleigh–Bénard convection. Eur. J. Mech. B Fluids 28, 578589.Google Scholar
Kurowski, M. J., Malinowski, S. P. & Grabowski, W. 2009 A numerical investigation of entrainment and transport within a stratocumulus-topped boundary layer. Q. J. R. Meteorol. Soc. 135, 7792.CrossRefGoogle Scholar
Leighton, R. I., Smith, G. B. & Handler, R. A. 2003 Direct numerical simulation of free convection beneath an air–water interface at low Rayleigh numbers. Phys. Fluids 15 (10), 31813193.Google Scholar
Lilly, D. K. 1968 Models of cloud-topped mixed layers under strong inversion. Q. J. R. Meteorol. Soc. 94, 292309.CrossRefGoogle Scholar
Mellado, J. P., Stevens, B., Schmidt, H. & Peters, N. 2009 Buoyancy reversal in cloud-top mixing layers. Q. J. R. Meteorol. Soc. 135, 963978.CrossRefGoogle Scholar
Mellado, J. P., Stevens, B., Schmidt, H. & Peters, N. 2010 Two-fluid formulation of the cloud-top mixing layer for direct numerical simulation. Theor. Comput. Fluid Dyn., doi:10.1007/s00162-010-0182-x.CrossRefGoogle Scholar
Moeng, C.-H. & Rotunno, R. 1990 Vertical velocity skewness in the bouyancy-driven boundary layer. J. Atmos. Sci. 47, 11491162.2.0.CO;2>CrossRefGoogle Scholar
Moeng, C.-H., Stevens, B. & Sullivan, P. P. 2005 Where is the interface of the stratocumulus-topped PBL. J. Atmos. Sci. 62, 26262631.Google Scholar
Nicholls, S. 1989 The structure of radiatively driven convection in stratocumulus. Q. J. R. Meteorol. Soc. 115, 487511.Google Scholar
Randall, D. A. 1980 Conditional instability of the first kind upside-down. J. Atmos. Sci. 37, 125130.2.0.CO;2>CrossRefGoogle Scholar
Sayler, B. J. & Breidenthal, R. E. 1998 Laboratory simulations of radiatively induced entrainment in stratiform clouds. J. Geophys. Res. 103 (D8), 88278837.Google Scholar
Shy, S. S. & Breidenthal, R. E. 1990 Laboratory experiments on the cloud-top entrainment instability. J. Fluid Mech. 214, 115.CrossRefGoogle Scholar
Siems, S. T. & Bretherton, C. S. 1992 A numerical investigation of cloud-top entrainment instability and related experiments. Q. J. R. Meteorol. Soc. 118, 787818.Google Scholar
Siems, S. T., Bretherton, C. S., Baker, M. B., Shy, S. & Breidenthal, R. E. 1990 Buoyancy reversal and cloud-top entrainment instability. Q. J. R. Meteorol. Soc. 116, 705739.Google Scholar
Siggia, E. D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.CrossRefGoogle Scholar
Stevens, B. 2002 Entrainment in stratocumulus-topped mixed layers. Q. J. R. Meteorol. Soc. 128, 26632690.CrossRefGoogle Scholar
Stevens, B., Lenschow, D. H., Faloona, I., Moeng, C.-H., Lilly, D. K., Blomquist, B., Vali, G., Bandy, A., Campos, T., Gerber, H., Haimov, S., Morley, B. & Thorton, C. 2003 a On entrainment rates in nocturnal marine stratocumulus. Q. J. R. Meteorol. Soc. 129 (595), 34693493.CrossRefGoogle Scholar
Stevens, B., Lenschow, D. H., Vali, G., Gerber, H., Bandy, A., Blomquist, B., Brenguier, J.-L., Bretherton, C. S., Burnet, F., Campos, T., Chai, S., Faloona, I., Friesen, D., Haimov, S., Laursen, K., Lilly, D. K., Loehrer, S. M., Malinowski, S. P., Morley, B., Petters, M. D., Rogers, D. C., Russel, L., Savic-Jovcic, V., Snider, J. R., Straub, D., Szumowski, M. J., Takagi, H., Thornton, D. C., Tschudi, M., Towhy, C., Wetzel, M. & van Zanten, M. C. 2003 b Dynamics and chemistry of marine stratocumulus: DYCOMS-II. Bull. Am. Meteorol. Soc. 84, 579593.Google Scholar
Stevens, B., Moeng, C.-H., Ackerman, A. S., Bretherton, C. S., Chlond, A., de Roode, S., Edwards, J., Golaz, J.-C., Jiang, H., Khairoutdinov, M., Kirkpatrick, M. P., Lewellen, D. C., Lock, A., Müller, F., Stevens, D. E., Whelan, E. & Zhu, P. 2005 Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Weather Rev. 133, 14431462.Google Scholar
Stevens, D. E., Bell, J. B., Almgren, A. S., Beckner, V. E. & Rendleman, C. A. 2000 Small-scale processes and entrainment in a stratocumulus marine boundary layer. J. Atmos. Sci. 57, 567581.2.0.CO;2>CrossRefGoogle Scholar
Sullivan, P. P., Moeng, C.-H., Stevens, B., Lenschow, D. H. & Mayor, S. D. 1998 Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci. 55, 30423064.Google Scholar
Theerthan, S. A. & Arakeri, J. H. 2000 Planform structure and heat transfer in turbulent free convection over horizontal surfaces. Phys. Fluids 12 (4), 884894.Google Scholar
Townsend, A. A. 1959 Temperature fluctuations over a heated horizontal surface. J. Fluid Mech. 5, 209241.Google Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
Wunsch, S. 2003 Stochastic simulations of buoyancy reversal experiments. Phys. Fluids 15 (6), 14421456.Google Scholar
Yamaguchi, T. & Randall, D. A. 2008 Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci. 65, 14811504.Google Scholar