Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-16T02:29:26.518Z Has data issue: false hasContentIssue false

Existence, stability and formation of baroclinic tripoles in quasi-geostrophic flows

Published online by Cambridge University Press:  11 November 2015

Jean N. Reinaud*
Affiliation:
Mathematical Institute, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
Xavier Carton
Affiliation:
Laboratoire de Physique des Océans, UFR Sciences, UBO/UEB, 6, Avenue le Gorgeu, 29200 Brest, France
*
Email address for correspondence: jean@mcs.st-and.ac.uk

Abstract

Hetons are baroclinic vortices able to transport tracers or species, which have been observed at sea. This paper studies the offset collision of two identical hetons, often resulting in the formation of a baroclinic tripole, in a continuously stratified quasi-geostrophic model. This process is of interest since it (temporarily or definitely) stops the transport of tracers contained in the hetons. First, the structure, stationarity and nonlinear stability of baroclinic tripoles composed of an upper core and two lower (symmetric) satellites are studied analytically for point vortices and numerically for finite-area vortices. The condition for stationarity of the point vortices is obtained and it is proven that the baroclinic point tripoles are neutral. Finite-volume stationary tripoles exist with marginal states having very elongated (figure-of-eight shaped) upper cores. In the case of vertically distant upper and lower cores, the latter can nearly join near the centre of the plane. These steady states are compared with their two-layer counterparts. Then, the nonlinear evolution of the steady states shows when they are often neutral (showing an oscillatory evolution); when they are unstable, they can either split into two hetons (by breaking of the upper core) or form a single heton (by merger of the lower satellites). These evolutions reflect the linearly unstable modes which can grow on the vorticity poles. Very tall tripoles can break up vertically due to the vertical shear mutually induced by the poles. Finally, the formation of such baroclinic tripoles from the offset collision of two identical hetons is investigated numerically. This formation occurs for hetons offset by less than the internal separation between their poles. The velocity shear during the interaction can lead to substantial filamentation by the upper core, thus forming small upper satellites, vertically aligned with the lower ones. Finally, in the case of close and flat poles, this shear (or the baroclinic instability of the tripole) can be strong enough that the formed baroclinic tripole is short-lived and that hetons eventually emerge from the collision and drift away.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bambrey, R. R., Reinaud, J. N. & Dritschel, D. G. 2007 Strong interactions between two co-rotating quasi-geostrophic vortices. J. Fluid Mech. 592, 117133.Google Scholar
Carton, X., Chérubin, L., Paillet, J., Morel, Y., Serpette, A. & Le Cann, B. 2002 Meddy coupling with a deep cyclone in the Gulf of Cadiz. J. Mar. Syst. 32, 1342.CrossRefGoogle Scholar
Carton, X., Flierl, G. R., Perrot, X., Meunier, T. & Sokolovskiy, M. A. 2010a Explosive instability of geostrophic vortices. Part 1: baroclinic instability. Theor. Comput. Fluid Dyn. 24 (1), 125130.Google Scholar
Carton, X., Meunier, T., Flierl, G. R., Perrot, X. & Sokolovskiy, M. A. 2010b Explosive instability of geostrophic vortices. Part 2: parametric instability. Theor. Comput. Fluid Dyn. 24 (1), 131135.Google Scholar
Dritschel, D. G. 1985 The stability and energetics of corotating uniform vortices. J. Fluid Mech. 157, 95113.CrossRefGoogle Scholar
Dritschel, D. G. & de la Torre Juárez, M. 1996 The instability and breakdown of tall columnar vortices in a quasi-geostrophic fluid. J. Fluid Mech. 328, 129160.Google Scholar
Ebbesmeyer, C. C., Taft, B. A., McWilliams, J. C., Shen, C. Y., Riser, S. C., Rossby, H. T., Biscaye, P. E. & Östlund, H. G. 1986 Detection, structure and origin of extreme anomalies in a Western Atlantic oceanographic section. J. Phys. Oceanogr. 16, 591612.2.0.CO;2>CrossRefGoogle Scholar
Flierl, G. R. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 339388.Google Scholar
Griffith, R. W. & Hopfinger, E. J. 1986 Experiments with baroclinic vortex pairs in a rotating fluid. J. Fluid Mech. 173, 501518.CrossRefGoogle Scholar
Gryanik, V. M. 1983a Dynamics of singular geostrophic vortices in a two-layer model of the atmosphere (ocean). Izv. Atmos. Ocean. Phys. 19, 171179.Google Scholar
Gryanik, V. M. 1983b Dynamics of localized vortex perturbations on vortex charges in a baroclinic fluid. Izv. Atmos. Ocean. Phys. 19, 347352.Google Scholar
Gryanik, V. M. & Tevs, M. V. 1989 Dynamics of singular geostrophical vortices in an $N$ -level model of the atmosphere (ocean). Izv. Atmos. Ocean. Phys. 25, 179188.Google Scholar
Hogg, N. G. & Stommel, H. M. 1985 The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat flow. Proc. R. Soc. Lond. A 397, 120.Google Scholar
Kizner, Z. 2006 Stability and transitions of hetonic quartets and baroclinic modons. Phys. Fluids 18, 056601.Google Scholar
Koshel, K. V., Sokolovskiy, M. A. & Verron, J. 2013 Three-vortex quasi-geostrophic dynamics in a two-layer fluid. Part 2. Regular and chaotic advaction around the perturbed steady states. J. Fluid Mech. 717, 255280.Google Scholar
L’Hegaret, P., Carton, X., Ambar, I., Menesguen, C., Hua, B.L., Chérubin, L., Aguiar, A., Le Cann, B., Daniault, N. & Serra, N. 2014 Evidence of Mediterranean water dipole collision in the Gulf of Cadiz. J. Geophys. Res. 119 (8), 53375359.Google Scholar
Ozugurlu, E., Reinaud, J. N. & Dritschel, D. G. 2008 Interaction between two quasi-geostrophic vortices of unequal potential-vorticity. J. Fluid Mech. 597, 395414.Google Scholar
Perrot, X. & Carton, X. 2010 Barotropic vortex interaction in a non uniform flow. Theor. Comput. Fluid Dyn. 24, 95100.Google Scholar
Pierrehumbert, R. T. 1980 A family of steady, translating vortex pairs with distributed vorticity. J. Fluid Mech. 99, 129144.CrossRefGoogle Scholar
Polvani, L. M. & Dritschel, D. G. 1993 Wave and vortex dynamics on the surface of the sphere: equilibria and their stability. J. Fluid Mech. 255, 3564.CrossRefGoogle Scholar
Reinaud, J. N. 2015 On the stability of continuously stratified quasi-geostrophic hetons. Fluid Dyn. Res. 47, 035510.Google Scholar
Reinaud, J. N. & Carton, X. 2009 The stability and non-linear evolution of quasi-geostrophic hetons. J. Fluid Mech. 636, 109135.Google Scholar
Reinaud, J. N. & Carton, X. 2015 Head on collision between two continuously stratified quasi-geostrophic hetons. J. Fluid Mech. 779, 144180.CrossRefGoogle Scholar
Reinaud, J. N. & Dritschel, D. G. 2002 The merger of vertically offset quasi-geostrophic vortices. J. Fluid Mech. 469, 287315.Google Scholar
Reinaud, J. N. & Dritschel, D. G. 2005 The critical merger distance between two co-rotating quasi-geostrophic vortices. J. Fluid Mech. 522, 357381.Google Scholar
Reinaud, J. N. & Dritschel, D. G. 2009 Destructive interactions between two counter-rotating quasi-geostrophic vortices. J. Fluid Mech. 639, 195211.Google Scholar
Shteinbuch-Fridman, B., Makarov, K., Carton, X. & Kizner, Z. 2015 Two-layer geostrophic tripoles comprised by patches of uniform potential vorticity. Phys. Fluids 27, 036602.CrossRefGoogle Scholar
Sokolovskiy, M. A. & Carton, X. 2010 Baroclinic multipole formation from heton interaction. Fluid Dyn. Res. 42, 045501.Google Scholar
Sokolovskiy, M. A., Koshel, K. V. & Carton, X. 2011 Baroclinic multipole evolution in shear and strain. Geophys. Astrophys. Fluid Dyn. 105, 506535.CrossRefGoogle Scholar
Sokolovskiy, M. A., Koshel, K. V. & Verron, J. 2013 Three-vortex quasi-geostrophic dynamics in a two-layer fluid. Part 1. Analysis of relative and absolute motions. J. Fluid Mech. 717, 232254.CrossRefGoogle Scholar
Sokolovskiy, M. A. & Verron, J. 2014 Dynamics of Vortex Structures in a Stratified Rotating Fluid, Atmospheric and Oceanographic Sciences Library, vol. 47. Springer.CrossRefGoogle Scholar
Vallis, C. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press.Google Scholar
Young, W. R. 1985 Some interactions between a small number of of baroclinic, geostrophic vortices. Geophys. Astrophys. Fluid Dyn. 33, 3561.CrossRefGoogle Scholar
Zhang, Z., Wang, W. & Qiu, B. 2014 Oceanic mass transport by mesoscale eddies. Science 345, 322324.CrossRefGoogle ScholarPubMed