Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T18:05:25.419Z Has data issue: false hasContentIssue false

Flow generated by oscillatory uniform heating of a rarefied gas in a channel

Published online by Cambridge University Press:  07 July 2016

Jason Nassios
Affiliation:
School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia Centre of Policy Studies, Victoria University, PO Box 14428, Victoria 8001, Australia
Ying Wan Yap
Affiliation:
School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
John E. Sader*
Affiliation:
School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
*
Email address for correspondence: jsader@unimelb.edu.au

Abstract

Kinetic theory provides a rigorous foundation to explore the unsteady (oscillatory) flow of a dilute gas, which is often generated by nanomechanical devices. Recently, formal asymptotic analyses of unsteady (oscillatory) flows at small Knudsen numbers have been derived from the linearised Boltzmann–Bhatnagar–Gross–Krook (Boltzmann–BGK) equation, in both the low- and high-frequency limits (Nassios & Sader, J. Fluid Mech., vol. 708, 2012, pp. 197–249 and vol. 729, 2013, pp. 1–46; Takata & Hattori, J. Stat. Phys., vol. 147, 2012, pp. 1182–1215). These asymptotic theories predict that unsteadiness can couple strongly with heat transport to dramatically modify the overall gas flow. Here, we study the gas flow generated between two parallel plane walls whose temperatures vary sinusoidally in time. Predictions of the asymptotic theories are compared to direct numerical solutions, which are valid for all Knudsen numbers and normalised frequencies. Excellent agreement is observed, providing the first numerical validation of the asymptotic theories. The asymptotic analyses also provide critical insight into the physical mechanisms underlying these flow phenomena, establishing that mass conservation (not momentum or energy) drives the flows – this explains the identical results obtained using different previous theoretical treatments of these linear thermal flows. This study highlights the unique gas flows that can be generated under oscillatory non-isothermal conditions and the importance of both numerical and asymptotic analyses in explaining the underlying mechanisms.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Bargatin, I., Kozinsky, I. & Roukes, M. L. 2007 Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators. Appl. Phys. Lett. 90 (9), 093116.CrossRefGoogle Scholar
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3), 511525.CrossRefGoogle Scholar
Cercignani, C. & Lampis, M. 1971 Kinetic models for gas-surface interactions. Transp. Theory Stat. Phys. 1 (2), 101114.CrossRefGoogle Scholar
Clarke, J. F., Kassoy, D. R. & Riley, N. 1984 Shocks generated in a confined gas due to rapid heat addition at the boundary. II. Strong shock waves. Proc. R. Soc. Lond. A 393 (1805), 331351.Google Scholar
Doi, T. 2011 Numerical analysis of the time-dependent energy and momentum transfers in a rarefied gas between two parallel planes based on the linearized Boltzmann equation. Trans. ASME J. Heat Transfer 133 (2), 022404.CrossRefGoogle Scholar
Ekinci, K. L., Yakhot, V., Rajauria, S., Colosqui, C. & Karabacak, D. M. 2010 High-frequency nanofluidics: a universal formulation of the fluid dynamics of MEMS and NEMS. Lab on a Chip 10 (22), 30133025.CrossRefGoogle ScholarPubMed
Hadjiconstantinou, N. G. 2006 The limits of Navier–Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics. Phys. Fluids 18 (11), 111301.CrossRefGoogle Scholar
Homolle, T. M. M. & Hadjiconstantinou, N. G. 2007 A low-variance deviational simulation Monte Carlo for the Boltzmann equation. J. Comput. Phys. 226 (2), 23412358.CrossRefGoogle Scholar
Juvé, V., Crut, A., Maioli, P., Pellarin, M., Broyer, M., Del Fatti, N. & Vallée, F. 2010 Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles. Nano Lett. 10 (5), 05.CrossRefGoogle ScholarPubMed
Kalempa, D. & Sharipov, F. 2012 Sound propagation through a rarefied gas. Influence of the gas-surface interaction. Intl J. Heat Fluid Flow 38, 190199.CrossRefGoogle Scholar
Loyalka, S. K. & Tompson, R. V. 2009 The velocity slip problem: accurate solutions of the BGK model integral equation. Eur. J. Mech. (B/Fluids) 28 (2), 211213.CrossRefGoogle Scholar
Manela, A. & Hadjiconstantinou, N. G. 2008 Gas motion induced by unsteady boundary heating in a small-scale slab. Phys. Fluids 20 (11), 117104.CrossRefGoogle Scholar
Manela, A. & Hadjiconstantinou, N. G. 2010 Gas-flow animation by unsteady heating in a microchannel. Phys. Fluids 22 (6), 062001.CrossRefGoogle Scholar
Meng, J., Zhang, Y., Hadjiconstantinou, N. G., Radtke, G. A. & Shan, X. 2013 Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows. J. Fluid Mech. 718, 347370.CrossRefGoogle Scholar
Nassios, J. & Sader, J. E. 2012 Asymptotic analysis of the Boltzmann–BGK equation for oscillatory flows. J. Fluid Mech. 708, 197249.CrossRefGoogle Scholar
Nassios, J. & Sader, J. E. 2013 High frequency oscillatory flows in a slightly rarefied gas according to the Boltzmann–BGK equation. J. Fluid Mech. 729, 146.CrossRefGoogle Scholar
Pelton, M., Chakraborty, D., Malachosky, E., Guyot-Sionnest, P. & Sader, J. E. 2013 Viscoelastic flows in simple liquids generated by vibrating nanostructures. Phys. Rev. Lett. 111, 244502.CrossRefGoogle ScholarPubMed
Pelton, M., Sader, J. E., Burgin, J., Liu, M., Guyot-Sionnest, P. & Gosztola, D. 2009 Damping of acoustic vibrations in gold nanoparticles. Nat. Nanotech. 4 (8), 492495.CrossRefGoogle ScholarPubMed
Radhwan, A. M. & Kassoy, D. R. 1984 The response of a confined gas to a thermal disturbance: rapid boundary heating. J. Engng Maths 18, 133156.CrossRefGoogle Scholar
Radtke, G. A., Hadjiconstantinou, N. G. & Wagner, W. 2011 Low-noise Monte Carlo simulation of the variable hard sphere gas. Phys. Fluids 23 (3), 030606.CrossRefGoogle Scholar
Ramanathan, S., Koch, D. L. & Bhiladvala, R. B. 2010 Noncontinuum drag force on a nanowire vibrating normal to a wall: simulations and theory. Phys. Fluids 22 (10), 103101.CrossRefGoogle Scholar
Rayleigh, Lord1899 XXV. On the conduction of heat in a spherical mass of air confined by walls at a constant temperature. Phil. Mag. Ser. 5 47 (286), 314–325.CrossRefGoogle Scholar
Schlichting, H. 1960 Boundary-layer Theory. McGraw-Hill.Google Scholar
Shakhov, E. M. 1968 Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3 (5), 9596.CrossRefGoogle Scholar
Sharipov, F. 2016 Rarefied Gas Dynamics: Fundamentals for Research and Practice. Wiley.CrossRefGoogle Scholar
Sharipov, F. & Kalempa, D. 2007 Gas flow near a plate oscillating longitudinally with an arbitrary frequency. Phys. Fluids 19 (1), 017110.CrossRefGoogle Scholar
Sharipov, F. & Kalempa, D. 2008 Oscillatory Couette flow at arbitrary oscillation frequency over the whole range of the Knudsen number. Microfluidics Nanofluidics 4 (5), 363374.CrossRefGoogle Scholar
Shi, Y. & Sader, J. E. 2010 Lattice Boltzmann method for oscillatory Stokes flow with applications to micro- and nanodevices. Phys. Rev. E 81 (3), 114.Google ScholarPubMed
Sone, Y. 1964 Kinetic theory analysis of linearized Rayleigh problem. J. Phys. Soc. Japan 19 (8), 14631473.CrossRefGoogle Scholar
Sone, Y. 1965 Effect of sudden change of wall temperature in rarefied gas. J. Phys. Soc. Japan 20 (2), 222229.CrossRefGoogle Scholar
Sone, Y. 1966 Thermal creep in rarefied gas. J. Phys. Soc. Japan 21, 18361837.CrossRefGoogle Scholar
Sone, Y. 1969 Asymptotic theory of flow of rarefied gas over a smooth boundary I. In Rarefied Gas Dynamics (ed. Trilling, L. & Wachman, H. Y.), p. 243. Academic.Google Scholar
Sone, Y. 1971 Asymptotic theory of flow of rarefied gas over a smooth boundary II. In Rarefied Gas Dynamics (ed. Dini, D.), pp. 737749. Editrice Tecnico Scientifica.Google Scholar
Sone, Y. 1974 Asymptotic theory of flow of rarefied gas over a smooth boundary. II. Trans. Japan Soc. Aeronaut. Space Sci. 17, 113122.Google Scholar
Takata, S., Aoki, K., Hattori, M. & Hadjiconstantinou, N. G. 2012 Parabolic temperature profile and second-order temperature jump of a slightly rarefied gas in an unsteady two-surface problem. Phys. Fluids 24 (3), 032002.CrossRefGoogle Scholar
Takata, S. & Hattori, M. 2012 Asymptotic theory for the time-dependent behavior of a slightly rarefied gas over a smooth solid boundary. J. Stat. Phys. 147 (6), 11821215.CrossRefGoogle Scholar
Welander, P. 1954 On the temperature jump in a rarefied gas. Ark. Fys. 7, 507553.Google Scholar
Yakhot, V. & Colosqui, C. 2007 Stokes’ second flow problem in a high-frequency limit: application to nanomechanical resonators. J. Fluid Mech. 586, 249.CrossRefGoogle Scholar
Yap, Y. W. & Sader, J. E. 2012 High accuracy numerical solutions of the Boltzmann Bhatnagar–Gross–Krook equation for steady and oscillatory Couette flows. Phys. Fluids 24 (3), 032004.CrossRefGoogle Scholar
Yariv, E. & Brenner, H. 2004 Flow animation by unsteady temperature fields. Phys. Fluids 16 (11), L95.CrossRefGoogle Scholar
Yu, K., Major, T. A., Chakraborty, D., Sajini Devadas, M., Sader, J. E. & Hartland, G. V. 2015 Compressible viscoelastic liquid effects generated by the breathing modes of isolated metal nanowires. Nano Lett. 15, 39643970.CrossRefGoogle ScholarPubMed