Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T08:04:30.209Z Has data issue: false hasContentIssue false

Flow of a viscous compressible fluid produced in a circular tube by an impulsive point source

Published online by Cambridge University Press:  26 January 2011

B. U. FELDERHOF
Affiliation:
Institut für Theoretische Physik A, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
G. OOMS*
Affiliation:
J. M. Burgerscentrum, Laboratory for Aero and Hydrodynamics, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
*
Email address for correspondence: g.ooms@tudelft.nl

Abstract

The flow of a viscous compressible fluid in a circular tube generated by a sudden impulse at a point on the axis is studied on the basis of the linearized Navier–Stokes equations. A no-slip boundary condition is assumed to hold on the wall of the tube. An efficient numerical scheme has been developed for the calculation of flow velocity and pressure disturbance as a function of position and time.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brigham, E. O. 1974 The Fast Fourier Transform. Prentice-Hall.Google Scholar
Cichocki, B. & Felderhof, B. U. 2000 Long-time tails in the solid-body motion of a sphere immersed in a suspension. Phys. Rev. E 62, 53835388.CrossRefGoogle Scholar
Felderhof, B. U. 2010 a Transient flow of a viscous compressible fluid in a circular tube after a sudden point impulse. J. Fluid Mech. 644, 97106.CrossRefGoogle Scholar
Felderhof, B. U. 2010 b Transient flow of a viscous compressible fluid in a circular tube after a sudden point impulse transverse to the axis. J. Fluid Mech. 649, 329340.Google Scholar
Frydel, D. & Diamant, H. 2010 Long-range dynamic correlations in confined suspensions. Phys. Rev. Lett. 104, 248302.Google Scholar
Hagen, M. H. J., Pagonabarraga, I., Lowe, C. P. & Frenkel, D. 1997 Algebraic decay of velocity fluctuations in a confined fluid. Phys. Rev. Lett. 78, 37853788.CrossRefGoogle Scholar
Jones, R. B. 1981 Hydrodynamic fluctuation forces. Physica A 105, 395416.CrossRefGoogle Scholar
Liron, N. & Sharar, R. 1978 Stokes flow due to a Skokeslet in a pipe. J. Fluid Mech. 86, 727744.CrossRefGoogle Scholar
Pagonabarraga, I., Hagen, M. H. J., Lowe, C. P. & Frenkel, D. 1999 Short-time dynamics of colloidal suspensions in confined geometries. Phys. Rev. E 59, 44584469.CrossRefGoogle Scholar