Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T05:16:07.708Z Has data issue: false hasContentIssue false

Flow-driven collapse of lubricant-infused surfaces

Published online by Cambridge University Press:  02 September 2020

Evgeny S. Asmolov
Affiliation:
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119071Moscow, Russia
Tatiana V. Nizkaya
Affiliation:
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119071Moscow, Russia
Olga I. Vinogradova*
Affiliation:
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119071Moscow, Russia DWI – Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056Aachen, Germany
*
Email address for correspondence: oivinograd@yahoo.com

Abstract

Lubricant-infused surfaces in an outer liquid flow generally reduce viscous drag. However, owing to the meniscus deformation, the infused state could collapse. Here, we discuss the transition between infused and collapsed states of transverse shallow grooves, considering the capillary number, liquid/lubricant viscosity ratio and the aspect ratio of the groove as parameters for inducing this transition. It is found that, depending on the depth of the grooves, two different scenarios occur. A collapse of lubricant-infused surfaces could happen due to a depinning of the meniscus from the front groove edge. However, for very shallow textures, the meniscus contacts the bottom wall before such a depinning could occur. Our interpretation could help avoid this generally detrimental effect in various applications.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asmolov, E. S., Nizkaya, T. V. & Vinogradova, O. I. 2018 Enhanced slip properties of lubricant-infused grooves. Phys. Rev. E 98, 033103.CrossRefGoogle Scholar
Asmolov, E. S. & Vinogradova, O. I. 2012 Effective slip boundary conditions for arbitrary one-dimensional surfaces. J. Fluid Mech. 706, 108117.CrossRefGoogle Scholar
Bico, J., Thiele, U. & Quere, D. 2002 Wetting of textured surfaces. Colloids Surf. A 206, 4146.CrossRefGoogle Scholar
Borkent, B., Dammler, S., Schonherr, H., Vansco, G. & Lohse, D. 2007 Superstability of surface nanobubbles. Phys. Rev. Lett. 98, 204502.CrossRefGoogle ScholarPubMed
von Borries Lopes, A., Thiele, U. & Hazel, A. L. 2018 On the multiple solutions of coating and rimming flows on rotating cylinders. J. Fluid Mech. 835, 540574.CrossRefGoogle Scholar
Cottin-Bizonne, C., Barentin, C., Charlaix, E., Bocquet, L. & Barrat, J. L. 2004 Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamic description. Eur. Phys. J. E 15, 489499.CrossRefGoogle ScholarPubMed
Doumenc, F. & Guerrier, B. 2013 Self-patterning induced by a solutal Marangoni effect in a receding drying meniscus. Europhys. Let. 103 (1), 14001.CrossRefGoogle Scholar
Dubov, A. L., Mourran, A., Möller, M. & Vinogradova, O. I. 2015 Regimes of wetting transitions on superhydrophobic textures conditioned by energy of receding contact lines. Appl. Phys. Lett. 106, 241601.CrossRefGoogle Scholar
Dubov, A. L, Nizkaya, T. V., Asmolov, E. S. & Vinogradova, O. I. 2018 Boundary conditions at the gas sectors of superhydrophobic grooves. Phys. Rev. Fluids 3 (1), 014002.CrossRefGoogle Scholar
Epstein, A. K., Wong, T. S., Belisle, R. A., Boggs, E. M. & Aizenberg, J. 2012 Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl Acad. Sci. USA 109, 1318213187.CrossRefGoogle ScholarPubMed
Gao, P. & Feng, J. J. 2009 Enhanced slip on a patterned substrate due to depinning of contact line. Phys. Fluids 21, 102102.CrossRefGoogle Scholar
Gauglitz, P. A. & Radke, C. J. 1988 An extended evolution equation for liquid film breakup in cylindrical capillaries. Chem. Engng Sci. 43 (7), 14571465.CrossRefGoogle Scholar
Ge, Z., Holmgren, H., Kronbichler, M., Brandt, L. & Kreiss, G. 2018 Effective slip over partially filled microcavities and its possible failure. Phys. Rev. Fluids 3 (5), 054201.CrossRefGoogle Scholar
Grate, J. W., Dehoff, K. J., Warner, M. G., Pittman, J. W., Wietsma, T. W., Zhang, C. & Oostrom, M. 2012 Correlation of oil–water and air–water contact angles of diverse silanized surfaces and relationship to fluid interfacial tensions. Langmuir 28 (18), 71827188.CrossRefGoogle ScholarPubMed
Herminghaus, S., Brinkmann, M. & Seemann, R. 2008 Wetting and dewetting of complex surface geometries. Annu. Rev. Mater. Res. 38, 101121.CrossRefGoogle Scholar
Hyväluoma, J. & Harting, J. 2008 Slip flow over structured surfaces with entrapped microbubbles. Phys. Rev. Lett. 100, 246001.CrossRefGoogle ScholarPubMed
Jung, Y. C. & Bhushan, B. 2009 Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Langmuir 25 (24), 1416514173.CrossRefGoogle ScholarPubMed
Karatay, E., Haase, A. S., Visser, C. W., Sun, C., Lohse, D., Tsai, P. A. & Lammertink, R. G. H. 2013 Control of slippage with tunable bubble mattresses. Proc. Natl Acad. Sci. USA 110, 84228426.CrossRefGoogle ScholarPubMed
Keiser, A., Keiser, L., Clanet, C. & Quere, D. 2017 Drop friction on liquid-infused materials. Soft Matt. 13, 69816987.CrossRefGoogle ScholarPubMed
Kim, P., Wong, T. S., Alvarenga, J., Kreder, M. J., Adorno-Martinez, W. E. & Aizenberg, J. 2012 Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6, 65696577.CrossRefGoogle ScholarPubMed
Liu, Y., Wexler, J. S., Schönecker, C. & Stone, H. A. 2016 Effect of viscosity ratio on the shear-driven failure of liquid-infused surfaces. Phys. Rev. Fluids 1, 074003.CrossRefGoogle Scholar
Maynes, D., Jeffs, K., Woolford, B. & Webb, B. W. 2007 Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction. Phys. Fluids 19, 093603.CrossRefGoogle Scholar
Miksis, M. J. & Davis, S. H. 1994 Slip over rough and coated surfaces. J. Fluid Mech. 173, 125139.CrossRefGoogle Scholar
Ng, C. O., Chu, H. C. W. & Wang, C. Y. 2010 On the effects of liquid-gas interfacial shear on slip flow through a parallel-plate channel with superhydrophobic grooved walls. Phys. Fluids 22, 102002.CrossRefGoogle Scholar
Nizkaya, T. V., Asmolov, E. S. & Vinogradova, O. I. 2013 Flow in channels with superhydrophobic trapezoidal textures. Soft Matt. 9, 1167111679.CrossRefGoogle Scholar
Nizkaya, T. V., Asmolov, E. S. & Vinogradova, O. I. 2014 Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures. Phys. Rev. E 90, 043017.CrossRefGoogle ScholarPubMed
Philip, J. R. 1972 Flows satisfying mixed no-slip and no-shear conditions. J. Appl. Math. Phys. 23, 353372.Google Scholar
Quere, D. 2008 Wetting and roughness. Annu. Rev. Mater. Res. 38, 7199.CrossRefGoogle Scholar
Reyssat, M., Yeomans, J. M. & Quere, D. 2007 Impalement of fakir drops. Europhys. Lett. 81 (2), 26006.CrossRefGoogle Scholar
Sbragaglia, M. & Prosperetti, A. 2007 A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Phys. Fluids 19, 043603.CrossRefGoogle Scholar
Snoeijer, J. H. 2006 Free-surface flows with large slopes: beyond lubrication theory. Phys. Fluids 18 (2), 021701.CrossRefGoogle Scholar
Solomon, B. R., Khalil, K. S. & Varanasi, K. K. 2014 Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30, 1097010976.CrossRefGoogle ScholarPubMed
Teo, S. J. & Khoo, B. C. 2010 Flow past superhydrophobic surfaces containing longitudinal grooves: effects of interface curvature. Microfluid Nanofluid 9, 499511.CrossRefGoogle Scholar
Thiele, U. 2018 Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting. Colloid Surf. A 553, 487495.CrossRefGoogle Scholar
Vinogradova, O. I. 1995 Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11, 22132220.CrossRefGoogle Scholar
Vinogradova, O. I. & Belyaev, A. V. 2011 Wetting, roughness and flow boundary conditions. J. Phys.: Condens. Matter 23, 184104.Google ScholarPubMed
Vinogradova, O. I., Bunkin, N. F., Churaev, N. V., Kiseleva, O. A., Lobeyev, A. V. & Ninham, B. W. 1995 Submicrocavity structure of water between hydrophobic and hydrophilic walls as revealed by optical cavitation. J. Colloid Interface Sci. 173, 443447.CrossRefGoogle Scholar
Vinogradova, O. I. & Dubov, A. L. 2012 Superhydrophobic textures for microfluidics. Mendeleev Commun. 22, 229237.CrossRefGoogle Scholar
Wexler, J. S., Jacobi, J. & Stone, H. A. 2015 Shear-driven failure of liquid-infused surfaces. Phys. Rev. Lett. 114, 168301.CrossRefGoogle ScholarPubMed
Wong, T. S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A. & Aizenberg, J. 2011 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443447.CrossRefGoogle ScholarPubMed
Xue, Y., Lv, P., Liu, Y., Shi, Y., Lin, H. & Duan, H. 2015 Morphology of gas cavities on patterned hydrophobic surfaces under reduced pressure. Phys. Fluids 27 (9), 092003.CrossRefGoogle Scholar
Yakubov, G. E., Vinogradova, O. I. & Butt, H.-J. 2000 Contact angles on hydrophobic microparticles at water–air and water–hexadecane interfaces. J. Adhes. Sci. Technol. 14 (14), 17831799.CrossRefGoogle Scholar
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19, 123601.CrossRefGoogle Scholar