Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T02:07:42.108Z Has data issue: false hasContentIssue false

Flows produced by the combined oscillatory rotation and translation of a circular cylinder in a quiescent fluid

Published online by Cambridge University Press:  23 December 2014

Christopher Koehler*
Affiliation:
US Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
Philip Beran
Affiliation:
US Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
Marcos Vanella
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
Elias Balaras
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
*
Email address for correspondence: ckoehler.11@gmail.com

Abstract

Flows produced by a circular cylinder undergoing oscillatory rotation and translation in a quiescent fluid have been studied via direct numerical simulations. The incompressible Navier–Stokes equations were solved for large dimensionless time windows using an immersed boundary method with adaptive Cartesian grid refinement. Parametric studies were conducted in two dimensions on the Reynolds number, Keulegan–Carpenter number and phase shift. In addition to the previously reported net thrust case (Blackburn et al., Phys. Fluids, vol. 11, 1999, pp. 4–6), the study catalogued the appearance of several streaming jet regimes with varying deflection angles, deflected and horizontal vortex shedding regimes, and a double mirrored jet regime with varying inter-jet angles, as well as several chaotic cases. Visualizations are presented to clarify each observed flow regime and to illustrate the parameter space. Connections are drawn between these canonical bluff-body deflected wakes and a similar phenomenon observed in aerofoils oscillating at high reduced frequencies in a cross-flow. Also, the discovery of the streaming jet regimes with varying deflection angles opens the door for using these flows as a low-Reynolds-number propulsive mechanism requiring only a two-degree-of-freedom actuator. Simulation results suggest that the flow phenomena observed in two dimensions persist in three dimensions, despite spanwise fluctuations.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balaras, E. & Vanella, M. 2009 Adaptive mesh refinement strategies for immersed boundary methods. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings, AIAA.Google Scholar
Beigzadeh-Abbassi, M. & Beigzadeh-Abbassi, M. R. 2012 Simulation of self-propulsive phenomenon, using lattice Boltzmann method. J. Am. Sci. 8 (2), 304309.Google Scholar
Blackburn, H. M., Elston, J. R. & Sheridan, J. 1998 Flows created by a cylinder with oscillatory translation and spin. In Conference on Bluff Body Wakes and Vortex-Induced Vibrations, ASME Summer Meeting, Washington. Paper FEDSM98-5157.Google Scholar
Blackburn, H. M., Elston, J. R. & Sheridan, J. 1999 Bluff-body propulsion produced by combined rotary and translational oscillation. Phys. Fluids 11 (1), 46.Google Scholar
Blackburn, H. M. & Henderson, R. D. 1999 A study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech. 385, 255286.CrossRefGoogle Scholar
Blondeaux, P., Guglielmini, L. & Triantafyllou, M. S. 2005 Chaotic flow generated by an oscillating foil. AIAA J. 43 (4), 918921.CrossRefGoogle Scholar
Bratt, J. B.1950 Flow patterns in the wake of an oscillating airfoil. Tech. Rep. Ministry of Supply, Aeronautical Research Council.Google Scholar
Du, L. & Dalton, C. 2013 LES calculation for uniform flow past a rotationally oscillating cylinder. J. Fluids Struct. 42, 4054.Google Scholar
Dubey, A., Antypas, K., Ganapathy, M. K., Reid, L. B., Riley, K., Sheeler, D., Siegel, A. & Weide, K. 2009 Extensible component-based architecture for flash, a massively parallel, multiphysics simulation code. Parallel Comput. 35 (10), 512522.CrossRefGoogle Scholar
Dütsch, H., Durst, F., Becker, S. & Lienhart, H. 1998 Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers. J. Fluid Mech. 360, 249271.CrossRefGoogle Scholar
Elston, J. R., Blackburn, H. M. & Sheridan, J. 2006 The primary and secondary instabilities of flow generated by an oscillating circular cylinder. J. Fluid Mech. 550, 359389.CrossRefGoogle Scholar
Freymuth, P. 1990 Thrust generation by an airfoil in hover modes. Exp. Fluids 9 (1–2), 1724.Google Scholar
Gu, W., Chyu, C. & Rockwell, D. 1994 Timing of vortex formation from an oscillating cylinder. Phys. Fluids 6 (11), 36773682.Google Scholar
Guilmineau, E. & Queutey, P. 2002 A numerical simulation of vortex shedding from an oscillating circular cylinder. J. Fluids Struct. 16 (6), 773794.Google Scholar
Hall, P. 1984 On the stability of the unsteady boundary layer on a cylinder oscillating transversely in a viscous fluid. J. Fluid Mech. 146, 347367.Google Scholar
Heathcote, S. & Gursul, I. 2004 Jet switching phenomenon for a plunging airfoil. In Proceedings of the 34th AIAA Fluid Dynamics Conference and Exhibit, Fluid Dynamics and Co-located Conferences, AIAA.Google Scholar
Heathcote, S. & Gursul, I. 2007 Jet switching phenomenon for a periodically plunging airfoil. Phys. Fluids 19 (2), 027104.CrossRefGoogle Scholar
Honji, H. 1981 Streaked flow around an oscillating circular cylinder. J. Fluid Mech. 107, 509520.Google Scholar
Iliadis, G. & Anagnostopoulos, P. 1998 Viscous oscillatory flow around a circular cylinder at low Keulegan–Carpenter numbers and frequency parameters. Int. J. Numer. Meth. Fluids 26 (4), 403442.Google Scholar
Jones, K. D., Dohring, C. M. & Platzer, M. F. 1998 Experimental and computational investigation of the Knoller–Betz effect. AIAA J. 36 (7), 12401246.CrossRefGoogle Scholar
Justesen, P. 1991 A numerical study of oscillating flow around a circular cylinder. J. Fluid Mech. 222, 157196.Google Scholar
Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating airfoil. AIAA J. 27 (9), 12001205.Google Scholar
Kumar, S., Lopez, C., Probst, O., Francisco, G., Askari, D. & Yang, Y. 2013 Flow past a rotationally oscillating cylinder. J. Fluid Mech. 735, 307346.CrossRefGoogle Scholar
Lam, K. M., Hu, J. C. & Liu, P. 2010a Vortex formation processes from an oscillating circular cylinder at high Keulegan–Carpenter numbers. Phys. Fluids 22 (1), 015105.CrossRefGoogle Scholar
Lam, K. M., Liu, P. & Hu, J. C. 2010b Combined action of transverse oscillations and uniform cross-flow on vortex formation and pattern of a circular cylinder. J. Fluids Struct. 26 (5), 703721.CrossRefGoogle Scholar
Leontini, J. S., Jacono, D. L. & Thompson, M. C. 2011 A numerical study of an inline oscillating cylinder in a free stream. J. Fluid Mech. 688, 551568.Google Scholar
MacNeice, P., Olson, K. M., Mobarry, C., de Fainchtein, R. & Packer, C. 2000 Paramesh: a parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun. 126 (3), 330354.Google Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.CrossRefGoogle Scholar
Morton, B. R. 1984 The generation and decay of vorticity. Geophys. Astrophys. Fluid Dyn. 28 (3–4), 277308.CrossRefGoogle Scholar
Nazarinia, M., Jacono, D. L., Thompson, M. C. & Sheridan, J. 2009a Flow behind a cylinder forced by a combination of oscillatory translational and rotational motions. Phys. Fluids 21 (5), 051701.Google Scholar
Nazarinia, M., Jacono, D. L., Thompson, M. C. & Sheridan, J. 2009b The three-dimensional wake of a cylinder undergoing a combination of translational and rotational oscillation in a quiescent fluid. Phys. Fluids 21 (6), 064101.Google Scholar
Nazarinia, M., Jacono, D. L., Thompson, M. C. & Sheridan, J. 2012 Flow over a cylinder subjected to combined translational and rotational oscillations. J. Fluids Struct. 32, 135145.Google Scholar
Ongoren, A. & Rockwell, D. 1988 Flow structure from an oscillating cylinder. Part 1. Mechanisms of phase shift and recovery in the near wake. J. Fluid Mech. 191, 197223.Google Scholar
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Platzer, M. F., Jones, K. D., Young, J. & Lai, J. C. S. 2008 Flapping wing aerodynamics: progress and challenges. AIAA J. 46 (9), 21362149.Google Scholar
Poncet, P. 2004 Topological aspects of three-dimensional wakes behind rotary oscillating cylinders. J. Fluid Mech. 517, 2753.Google Scholar
Shinde, S. Y. & Arakeri, J. H. 2013 Jet meandering by a foil pitching in quiescent fluid. Phys. Fluids 25 (4), 041701.Google Scholar
Spagnolie, S. E., Moret, L., Shelley, M. J. & Zhang, J. 2010 Surprising behaviors in flapping locomotion with passive pitching. Phys. Fluids 22 (4), 041903.Google Scholar
Tatsuno, M. & Bearman, P. W. 1990 A visual study of the flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers and low Stokes numbers. J. Fluid Mech. 211, 157182.Google Scholar
Thiria, B., Goujon-Durand, S. & Wesfreid, J. E. 2006 The wake of a cylinder performing rotary oscillations. J. Fluid Mech. 560, 123147.Google Scholar
Tokumaru, P. T. & Dimotakis, P. E. 1991 Rotary oscillation control of a cylinder wake. J. Fluid Mech. 224, 7790.CrossRefGoogle Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.Google Scholar
Vanella, M. & Balaras, E. 2009 A moving-least-squares reconstruction for embedded-boundary formulations. J. Comput. Phys. 228 (18), 66176628.Google Scholar
Vanella, M., Rabenold, P. & Balaras, E. 2010 A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid–structure interaction problems. J. Comput. Phys. 229 (18), 64276449.Google Scholar
Wei, Z. & Zheng, Z. C. 2013 Mechanisms of deflection angle change in the near and far vortex wakes behind a heaving airfoil. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings, AIAA.Google Scholar
Williamson, C. H. K. 1985 Sinusoidal flow relative to circular cylinders. J. Fluid Mech. 155, 141174.CrossRefGoogle Scholar
Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2 (4), 355381.Google Scholar

Koehler et al. supplementary movie

HS Regime Movie for a completely out of phase case (φ=π).

Download Koehler et al. supplementary movie(Video)
Video 7.1 MB

Koehler et al. supplementary movie

HS Regime Movie for a completely out of phase case (φ=π).

Download Koehler et al. supplementary movie(Video)
Video 5.1 MB
Supplementary material: File

Koehler et al. supplementary material

Supplementary figures

Download Koehler et al. supplementary material(File)
File 13.6 MB

Koehler et al. supplementary movie

HS Regime Movie for a slightly out of phase case (φ=3π/4).

Download Koehler et al. supplementary movie(Video)
Video 5 MB

Koehler et al. supplementary movie

HS Regime Movie for a slightly out of phase case (φ=3π/4).

Download Koehler et al. supplementary movie(Video)
Video 3.7 MB

Koehler et al. supplementary movie

HV Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 11 MB

Koehler et al. supplementary movie

HV Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 8.1 MB

Koehler et al. supplementary movie

DV Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 11.9 MB

Koehler et al. supplementary movie

DV Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 8.6 MB

Koehler et al. supplementary movie

DS Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 7.8 MB

Koehler et al. supplementary movie

DS Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 5.6 MB

Koehler et al. supplementary movie

DS* Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 7.2 MB

Koehler et al. supplementary movie

DS* Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 5.2 MB

Koehler et al. supplementary movie

DJ Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 7.4 MB

Koehler et al. supplementary movie

DJ Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 5.3 MB

Koehler et al. supplementary movie

JT Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 8 MB

Koehler et al. supplementary movie

JT Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 5.7 MB

Koehler et al. supplementary movie

DD Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 13.7 MB

Koehler et al. supplementary movie

DD Regime Movie

Download Koehler et al. supplementary movie(Video)
Video 9.6 MB