Published online by Cambridge University Press: 12 April 2006
When a ferromagnetic fluid with a horizontal free surface is subjected to a uniform vertical applied magnetic field B0, it is known (Cowley & Rosensweig 1967) that the surface may be unstable when the field strength exceeds a certain critical value Bc. In this paper we consider, by means of an energy minimization principle, the possible forms that the surface may then take. Under the assumption that |μ − 1| [Lt ] 1 (where μ is the magnetic permeability of the fluid), it is shown that when B0 is near to Bc there are three equilibrium configurations for the surface: (i) flat surface, (ii) stationary hexagonal pattern, (iii) stationary square pattern. Configuration (i) is stable for B0 < Bc, (ii) is stable for B0 > Bc and B0−Bc sufficiently small, and (iii) is stable for some higher values of B0. In each configuration the fluid is static, and the surface is in equilibrium under the joint action of gravity, surface tension, and magnetic forces. The amplitude of the surface perturbation in cases (ii) and (iii) is calculated, and hysteresis effects associated with increase and decrease of B0 are discussed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.