Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T11:35:07.809Z Has data issue: false hasContentIssue false

Grounding-line flux conditions for marine ice-sheet systems under effective-pressure- dependent and hybrid friction laws

Published online by Cambridge University Press:  10 November 2023

Thomas Gregov*
Affiliation:
Aérospatiale et Mécanique, Université de Liège, Allée de la Découverte 9, B-4000 Liège, Belgium Laboratoire de Glaciologie, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
Frank Pattyn
Affiliation:
Laboratoire de Glaciologie, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium
Maarten Arnst
Affiliation:
Aérospatiale et Mécanique, Université de Liège, Allée de la Découverte 9, B-4000 Liège, Belgium
*
Email address for correspondence: thomas.gregov@uliege.be

Abstract

Flux conditions are semi-analytical expressions that can be used to determine the flux at the grounding line of marine ice sheets. In the glaciology literature, such flux conditions have initially been established for the Weertman and Coulomb friction laws. However, the extension to more general and complex friction laws, such as the Budd friction law, for which basal friction depends on both the basal velocity and the effective pressure, is a topic of recent research. Several studies have also shown that hybrid friction laws, which consider a transition between a power-law friction far from the grounding line and a plastic behaviour close to it, were good candidates for improved modelling of marine ice sheets. In this article, we show that the flux conditions previously derived for the Weertman and Coulomb friction laws can be generalised to flux conditions for the Budd friction law with two different effective-pressure models. In doing so, we build a bridge between the results obtained for these two friction laws. We provide a justification for the existence and uniqueness of a solution to the boundary-layer problem based on asymptotic developments. We also generalise our results to hybrid friction laws, based on a parametrisation of the flux condition. Finally, we discuss the validity of the assumptions made during the derivation, and we provide additional explicit expressions for the flux that stay valid when the bedrock slopes are important or when the friction coefficients are relatively small.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brondex, J., Gagliardini, O., Gillet-Chaulet, F. & Durand, G. 2017 Sensitivity of grounding line dynamics to the choice of the friction law. J. Glaciol. 63 (241), 854866.CrossRefGoogle Scholar
Budd, W.F., Keage, P.L. & Blundy, N.A. 1979 Empirical studies of ice sliding. J. Glaciol. 23 (89), 157170.CrossRefGoogle Scholar
Bueler, E. & Brown, J. 2009 Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. J. Geophys. Res. 114 (F3).CrossRefGoogle Scholar
Bueler, E. & van Pelt, W. 2015 Mass-conserving subglacial hydrology in the parallel ice sheet model version 0.6. Geosci. Model Develop. 8 (6), 16131635.CrossRefGoogle Scholar
Flowers, G.E. 2015 Modelling water flow under glaciers and ice sheets. Proc. R. Soc. A: Math. Phys. Engng Sci. 471 (2176), 20140907.CrossRefGoogle ScholarPubMed
Gagliardini, O., Cohen, D., Råback, P. & Zwinger, T. 2007 Finite-element modeling of subglacial cavities and related friction law. J. Geophys. Res. 112 (F2).Google Scholar
Gudmundsson, G.H. 2013 Ice-shelf buttressing and the stability of marine ice sheets. Cryosphere 7 (2), 647655.CrossRefGoogle Scholar
Gudmundsson, G.H., Krug, J., Durand, G., Favier, L. & Gagliardini, O. 2012 The stability of grounding lines on retrograde slopes. Cryosphere 6 (6), 14971505.CrossRefGoogle Scholar
Haseloff, M. & Sergienko, O.V. 2018 The effect of buttressing on grounding line dynamics. J. Glaciol. 64 (245), 417431.CrossRefGoogle Scholar
Haseloff, M. & Sergienko, O.V. 2022 Effects of calving and submarine melting on steady states and stability of buttressed marine ice sheets. J. Glaciol. 68 (272), 11491166.CrossRefGoogle Scholar
Hewitt, I.J. 2013 Seasonal changes in ice sheet motion due to melt water lubrication. Earth Planet. Sci. Lett. 371–372, 1625.CrossRefGoogle Scholar
Hindmarsh, R.C.A. 2012 An observationally validated theory of viscous flow dynamics at the ice-shelf calving front. J. Glaciol. 58 (208), 375387.CrossRefGoogle Scholar
MacAyeal, D.R. 1989 Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. J. Geophys. Res.: Solid Earth 94 (B4), 40714087.CrossRefGoogle Scholar
Martin, M.A., Winkelmann, R., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C. & Levermann, A. 2011 The potsdam parallel ice sheet model (PISM-PIK) – part 2: dynamic equilibrium simulation of the Antarctic ice sheet. Cryosphere 5 (3), 727740.CrossRefGoogle Scholar
Minchew, B. & Joughin, I. 2020 Toward a universal glacier slip law. Science 368 (6486), 2930.CrossRefGoogle Scholar
Morland, L.W. 1987 Unconfined ice-shelf flow. In Dynamics of the West Antarctic Ice Sheet, pp. 99–116. Springer.CrossRefGoogle Scholar
Pattyn, F. 2003 A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res. 108 (B8).CrossRefGoogle Scholar
Pattyn, F., et al. 2012 Results of the marine ice sheet model intercomparison project, MISMIP. Cryosphere 6 (3), 573588.CrossRefGoogle Scholar
Pegler, S.S. 2016 The dynamics of confined extensional flows. J. Fluid Mech. 804, 2457.CrossRefGoogle Scholar
Pegler, S.S. 2018 a Marine ice sheet dynamics: the impacts of ice-shelf buttressing. J. Fluid Mech. 857, 605647.CrossRefGoogle Scholar
Pegler, S.S. 2018 b Suppression of marine ice sheet instability. J. Fluid Mech. 857, 648680.CrossRefGoogle Scholar
Reese, R., Winkelmann, R. & Gudmundsson, G.H. 2018 Grounding-line flux formula applied as a flux condition in numerical simulations fails for buttressed Antarctic ice streams. Cryosphere 12 (10), 32293242.CrossRefGoogle Scholar
Robel, A.A., DeGiuli, E., Schoof, C. & Tziperman, E. 2013 Dynamics of ice stream temporal variability: modes, scales, and hysteresis. J. Geophys. Res.: Earth Surf. 118 (2), 925936.CrossRefGoogle Scholar
Robel, A.A., Schoof, C. & Tziperman, E. 2016 Persistence and variability of ice-stream grounding lines on retrograde bed slopes. Cryosphere 10 (4), 18831896.CrossRefGoogle Scholar
Schoof, C. 2003 The effect of basal topography on ice sheet dynamics. Contin. Mech. Thermodyn. 15 (3), 295307.CrossRefGoogle Scholar
Schoof, C. 2005 The effect of cavitation on glacier sliding. Proc. R. Soc. A: Math. Phys. Engng Sci. 461 (2055), 609627.CrossRefGoogle Scholar
Schoof, C. 2007 a Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. 112 (F3).CrossRefGoogle Scholar
Schoof, C. 2007 b Marine ice-sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech. 573, 2755.CrossRefGoogle Scholar
Schoof, C. 2010 Coulomb friction and other sliding laws in a higher order glacier flow model. Math. Models Meth. Appl. Sci. 20 (01), 157189.CrossRefGoogle Scholar
Schoof, C. 2011 Marine ice sheet dynamics. Part 2. A Stokes flow contact problem. J. Fluid Mech. 679, 122155.CrossRefGoogle Scholar
Schoof, C. 2012 Marine ice sheet stability. J. Fluid Mech. 698, 6272.CrossRefGoogle Scholar
Schoof, C., Davis, A.D. & Popa, T.V. 2017 Boundary layer models for calving marine outlet glaciers. Cryosphere 11 (5), 22832303.CrossRefGoogle Scholar
Schoof, C. & Hindmarsh, R.C.A. 2010 Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Q. J. Mech. Appl. Maths 63 (1), 73114.CrossRefGoogle Scholar
Sergienko, O.V. 2012 The effects of transverse bed topography variations in ice-flow models. J. Geophys. Res.: Earth Surf. 117 (F3).CrossRefGoogle Scholar
Sergienko, O.V. 2022 a Marine outlet glacier dynamics, steady states and steady-state stability. J. Glaciol. 68 (271), 946960.Google Scholar
Sergienko, O.V. 2022 b No general stability conditions for marine ice-sheet grounding lines in the presence of feedbacks. Nat. Commun. 13 (1), 2265.CrossRefGoogle ScholarPubMed
Sergienko, O.V. & Haseloff, M. 2023 ‘Stable’ and ‘unstable’ are not useful descriptions of marine ice sheets in the Earth's climate system. J. Glaciol. 69 (277), 14831499.CrossRefGoogle Scholar
Sergienko, O.V. & Wingham, D.J. 2019 Grounding line stability in a regime of low driving and basal stresses. J. Glaciol. 65 (253), 833849.CrossRefGoogle Scholar
Sergienko, O.V. & Wingham, D.J. 2022 Bed topography and marine ice-sheet stability. J. Glaciol. 68 (267), 124138.CrossRefGoogle Scholar
Tsai, V.C., Stewart, A.L. & Thompson, A.F. 2015 Marine ice-sheet profiles and stability under Coulomb basal conditions. J. Glaciol. 61 (226), 205215.CrossRefGoogle Scholar
Weertman, J. 1957 On the sliding of glaciers. J. Glaciol. 3 (21), 3338.CrossRefGoogle Scholar
Werder, M.A., Hewitt, I.J., Schoof, C.G. & Flowers, G.E. 2013 Modeling channelized and distributed subglacial drainage in two dimensions. J. Geophys. Res.: Earth Surf. 118 (4), 21402158.CrossRefGoogle Scholar
Zoet, L.K. & Iverson, N.R. 2015 Experimental determination of a double-valued drag relationship for glacier sliding. J. Glaciol. 61 (225), 17.CrossRefGoogle Scholar
Zoet, L.K. & Iverson, N.R. 2020 A slip law for glaciers on deformable beds. Science 368 (6486), 7678.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Gregov et al. supplementary material

Gregov et al. supplementary material

Download Gregov et al. supplementary material(PDF)
PDF 157.9 KB