Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T03:56:21.032Z Has data issue: false hasContentIssue false

Hierarchical parcel-swapping representation of turbulent mixing. Part 2. Application to channel flow

Published online by Cambridge University Press:  10 June 2014

Alan R. Kerstein*
Affiliation:
72 Lomitas Road, Danville, CA 94526, USA
*
Email address for correspondence: alan.kerstein@gmail.com

Abstract

A novel concept for simulation of turbulent mixing, termed hierarchical parcel swapping (HiPS), was recently proposed. The method involves either a parameterized representation of the turbulent flow or a more self-contained flow simulation. As a step toward turbulent mixing applications, the latter formulation is used for the first numerical demonstration of model performance. Owing to its suitability for this purpose and its role as a canonical benchmark, channel flow is the target application. Despite its idealized representation of this flow, HiPS is shown to capture salient features of the flow with a notable degree of quantitative accuracy. The implications of this finding with regard to flow physics and with regard to the applicability of HiPS to other problems are discussed.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.Google Scholar
Alfredsson, P. H., Örlü, R. & Schlatter, P. 2011 The viscous sublayer revisited – exploiting self-similarity to determine the wall position and friction velocity. Exp. Fluids 51, 271280.CrossRefGoogle Scholar
Aurell, E., Dormy, E. & Frick, P. 1997 Binary tree models of high-Reynolds-number turbulence. Phys. Rev. E 56, 16921698.CrossRefGoogle Scholar
Benzi, R., Biferale, L. & Trovatore, E. 1997 Ultrametric structure of multiscale energy correlations in turbulent models. Phys. Rev. Lett. 79, 16701673.Google Scholar
Biferale, L., Calzavarini, E. & Toschi, F. 2011 Multi-time multi-scale correlation functions in hydrodynamic turbulence. Phys. Fluids 23, 085107.Google Scholar
Buschmann, M. H. & Gad-el-Hak, M. 2003 Generalized logarithmic law and its consequences. AIAA J. 41, 4048.CrossRefGoogle Scholar
Eckert, E. R. G. & Drake, R. M. 1972 Analysis of Heat and Mass Transfer. McGraw-Hill.Google Scholar
Fernholz, H. H. & Finley, P. J. 1996 The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog. Aerosp. Sci. 32, 245311.Google Scholar
Fox, R. O. 2003 Computational Models for Turbulent Reacting Flows. Cambridge University Press.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Gonzalez-Juez, E., Kerstein, A. R. & Lignell, D. O. 2011 Fluxes across double-diffusive interfaces: a one-dimensional-turbulence study. J. Fluid Mech. 677, 218254.Google Scholar
Gurvich, A. S. & Yaglom, A. M. 1967 Breakdown of eddies and probability distributions for small-scale turbulence. Phys. Fluids Suppl. 10, S59S65.Google Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to $Re_{\tau }=2003$ . Phys. Fluids 18, 011702.Google Scholar
Kadanoff, L. P. 1995 A model of turbulence. Phys. Today 48, 1113.Google Scholar
Kerstein, A. R. 1999 One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392, 277334.Google Scholar
Kerstein, A. R. 2009 One-dimensional turbulence stochastic simulation of multi-scale dynamics. In Interdisciplinary Aspects of Turbulence, Lecture Notes in Physics, vol. 756, pp. 291333. Springer.Google Scholar
Kerstein, A. R. 2013 Hierarchical parcel-swapping representation of turbulent mixing. Part 1. Formulation and scaling properties. J. Stat. Mech. 153, 142161.Google Scholar
Kerstein, A. R., Ashurst, W. T., Wunsch, S. & Nilsen, V. 2001 One-dimensional turbulence: vector formulation and application to free shear flows. J. Fluid Mech. 447, 85109.Google Scholar
Kerstein, A. R. & Dreeben, T. D. 2000 Prediction of turbulent free shear flow statistics using a simple stochastic model. Phys. Fluids 12, 418424.CrossRefGoogle Scholar
Kerstein, A. R. & Wunsch, S. 2006 Simulation of a stably stratified atmospheric boundary layer using one-dimensional turbulence. Boundary-Layer Meteorol. 118, 325356.CrossRefGoogle Scholar
Law, A. M. & Kelton, W. D. 2000 Simulation Modeling and Analysis. McGraw-Hill.Google Scholar
Lenaers, P., Li, Q., Brethouwer, G., Schlatter, P. & Örlü, R. 2012 Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys. Fluids 24, 035110.CrossRefGoogle Scholar
Lignell, D. O., Kerstein, A. R., Sun, G. & Monson, E. I. 2013 Mesh adaption for efficient multiscale implementation of one-dimensional turbulence. Theor. Comput. Fluid Dyn. 27, 273295.Google Scholar
L’vov, V. S., Podivilov, E. & Procaccia, I. 1997 Temporal multiscaling in hydrodynamic turbulence. Phys. Rev. E 55, 70307035.Google Scholar
Mandelbrot, B. B. 1985 Self-affine fractals and fractal dimension. Phys. Scr. 32, 257260.Google Scholar
Meneveau, C. & Sreenivasan, K. R. 1991 The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224, 429484.Google Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 DNS of turbulent channel flow up to $Re_{\tau }=590$ . Phys. Fluids 11, 943945.Google Scholar
Örlü, R. & Schlatter, P. 2011 On the fluctuating wall shear stress in zero pressure-gradient turbulent boundary layer flows. Phys. Fluids 23, 021704.Google Scholar
Pandit, R., Ray, S. S. & Mitra, D. 2008 Dynamic multiscaling in turbulence. Eur. Phys. J. B 64, 463469.Google Scholar
Pope, S. B. 1985 Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119192.CrossRefGoogle Scholar
Pope, S. B. 2013 A model for turbulent mixing based on shadow-position conditioning. Phys. Fluids 25, 110803.Google Scholar
Schlichting, H. & Gersten, K. 2000 Boundary Layer Theory. Springer.CrossRefGoogle Scholar
Schmidt, R. C., Kerstein, A. R., Wunsch, S. & Nilsen, V. 2003 Near-wall LES closure based on one-dimensional turbulence modeling. J. Comput. Phys. 186, 317355.CrossRefGoogle Scholar
Schultz, M. P. & Flack, K. A. 2013 Reynolds-number scaling of turbulent channel flow. Phys. Fluids 25, 025104.Google Scholar
Sreenivasan, K. R. & Stolovitzky, G. 1995 Turbulent cascades. J. Stat. Phys. 78, 311333.CrossRefGoogle Scholar
Subramaniam, S. & Pope, S. B. 1998 A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 115, 487514.CrossRefGoogle Scholar
Zanoun, E.-S., Nagib, H. & Durst, F. 2009 Refined $c_f$ relation for turbulent channels and consequences for high- $Re$ experiments. Fluid Dyn. Res. 41, 021405.CrossRefGoogle Scholar