Hostname: page-component-857557d7f7-nk9cn Total loading time: 0 Render date: 2025-11-30T05:40:22.917Z Has data issue: false hasContentIssue false

Highly concentrated surfactant solutions influence cross-stream migration of a drop in a Poiseuille flow

Published online by Cambridge University Press:  24 November 2025

Sayali N. Jadhav
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Gandhinagar , Gandhinagar, Gujarat 382055, India
Shubhadeep Mandal
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
Uddipta Ghosh*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Gandhinagar , Gandhinagar, Gujarat 382055, India
*
Corresponding author: Uddipta Ghosh, uddipta.ghosh@iitgn.ac.in

Abstract

Surfactants are usually added in droplet-based systems to stabilise them. When their concentration exceeds the critical micelle concentration (CMC), they self-assemble into micelles, which act as reservoirs regulating the availability of monomers in the continuous phase, thereby promoting interfacial remobilisation. The monomers get adsorbed onto a drop’s interface to alter its surface tension, and thus, governs how the drop moves within the suspending phase. Indeed, fine tuning droplet trajectories remain crucial in many classical as well as modern applications. Yet, the role of soluble surfactants in modulating droplet movement, especially at high concentrations, hitherto remains poorly understood. To address this, here we investigate the motion and cross-stream migration of a non-deforming drop in an unbounded Poiseuille flow, in the presence of bulk-soluble surfactants at concentrations above the CMC. We build a mixed semi-analytical-cum-numerical framework using spherical harmonics to determine the ensuing velocity and concentration fields. Our results suggest that the drop migrates towards the flow centreline, the extent of which depends on the interplay between the bulk concentration and the sensitivity of the interfacial tension to the surfactant molecules. This propensity for migration plateaus in the presence of micelles, although changing their specific properties seems to have relatively little impact. We further establish that adsorption–desorption between the interface and the bulk tends to suppress migration, while a relatively stronger coupling between bulk and interfacial transport facilitates the same. These findings highlight the crucial role of micelles in droplet motion, with implications in microfluidic control strategies and surfactant-driven flow manipulation.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdulredha, M.M., Hussain, S.A., Abdullah, L.C. & Hong, T.L. 2022 Water-in-oil emulsion stability and demulsification via surface-active compounds: a review. J. Petrol. Sci. Engng 209, 109848.10.1016/j.petrol.2021.109848CrossRefGoogle Scholar
Agnihotri, S.N., Ugolini, G.S., Sullivan, M.R., Yang, Y., De Ganzó, A., Lim, J.W. & Konry, T. 2022 Droplet microfluidics for functional temporal analysis and cell recovery on demand using microvalves: application in immunotherapies for cancer. Lab on a Chip 22 (17), 32583267.10.1039/D2LC00435FCrossRefGoogle ScholarPubMed
Ahmed, Z., Izbassarov, D., Lu, J., Tryggvason, G., Muradoglu, M. & Tammisola, O. 2020 Effects of soluble surfactant on lateral migration of a bubble in a pressure driven channel flow. Intl J. Multiphase Flow 126, 103251.10.1016/j.ijmultiphaseflow.2020.103251CrossRefGoogle Scholar
Aubry, G., Lee, H.J. & Lu, H. 2023 Advances in microfluidics: technical innovations and applications in diagnostics and therapeutics. Anal. Chem. 95 (1), 444467.CrossRefGoogle Scholar
Baret, J.-C. 2012 Surfactants in droplet-based microfluidics. Lab on a Chip 12 (3), 422433.10.1039/C1LC20582JCrossRefGoogle ScholarPubMed
Bera, A. & Mandal, A. 2015 Microemulsions: a novel approach to enhanced oil recovery: a review. J. Petrol. Exploration Prod. Technol. 5, 255268.10.1007/s13202-014-0139-5CrossRefGoogle Scholar
Brenner, H. 1964 The Stokes resistance of a slightly deformed sphere. Chem. Engng Sci. 19 (8), 519539.10.1016/0009-2509(64)85045-4CrossRefGoogle Scholar
Chang, C.-H. & Franses, E.I. 1995 Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids Surf. A: Physicochem. Engng Aspects 100, 145.10.1016/0927-7757(94)03061-4CrossRefGoogle Scholar
Craster, R.V., Matar, O.K. & Papageorgiou, D.T. 2009 Breakup of surfactant-laden jets above the critical micelle concentration. J. Fluid Mech. 629, 195219.10.1017/S0022112009006533CrossRefGoogle Scholar
Dandekar, R. & Ardekani, A.M. 2020 Effect of interfacial viscosities on droplet migration at low surfactant concentrations. J. Fluid Mech. 902, A2.10.1017/jfm.2020.551CrossRefGoogle Scholar
Danov, K.D., Vlahovska, P.M., Horozov, T., Dushkin, C.D., Kralchevsky, P.A., Mehreteab, A. & Broze, G. 1996 Adsorption from micellar surfactant solutions: nonlinear theory and experiment. J. Colloid Interface Sci. 183 (1), 223235.10.1006/jcis.1996.0537CrossRefGoogle Scholar
Das, S., Mandal, S. & Chakraborty, S. 2018 Effect of temperature gradient on the cross-stream migration of a surfactant-laden droplet in Poiseuille flow. J. Fluid Mech. 835, 170216.CrossRefGoogle Scholar
Das, S., Mandal, S., Som, S.K. & Chakraborty, S. 2017 Migration of a surfactant-laden droplet in non-isothermal Poiseuille flow. Phys. Fluids 29 (1), 012002.10.1063/1.4973663CrossRefGoogle Scholar
Dickinson, E. 2011 Double emulsions stabilized by food biopolymers. Food Biophys. 6 (1), 111.10.1007/s11483-010-9188-6CrossRefGoogle Scholar
Dwivedi, P., Pillai, D. & Mangal, R. 2022 Self-propelled swimming droplets. Curr. Opin. Colloid Interface Sci. 61, 101614.10.1016/j.cocis.2022.101614CrossRefGoogle Scholar
Ferri, J.K. & Stebe, K.J. 2000 Which surfactants reduce surface tension faster? A scaling argument for diffusion-controlled adsorption. Adv. Colloid Interface Sci. 85 (1), 6197.10.1016/S0001-8686(99)00027-5CrossRefGoogle ScholarPubMed
Frising, T., Noïk, C. & Dalmazzone, C. 2006 The liquid/liquid sedimentation process: from droplet coalescence to technologically enhanced water/oil emulsion gravity separators: a review. J. Dispersion Sci. Technol. 27 (7), 10351057.10.1080/01932690600767098CrossRefGoogle Scholar
Haber, S. & Hetsroni, G. 1972 Hydrodynamics of a drop submerged in an unbounded arbitrary velocity field in the presence of surfactants. Appl. Sci. Res. 25, 215233.10.1007/BF00382297CrossRefGoogle Scholar
Hanna, J.A. & Vlahovska, P.M. 2010 Surfactant-induced migration of a spherical drop in Stokes flow. Phys. Fluids 22 (1), 013102.10.1063/1.3277665CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, vol. 1. Springer Science & Business Media,10.1007/978-94-009-8352-6CrossRefGoogle Scholar
Hetsroni, G. & Haber, S. 1970 The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol. Acta 9, 488496.10.1007/BF01985457CrossRefGoogle Scholar
Iqbal, M., Zafar, N., Fessi, H. & Elaissari, A. 2015 Double emulsion solvent evaporation techniques used for drug encapsulation. Intl J. Pharm. 496 (2), 173190.10.1016/j.ijpharm.2015.10.057CrossRefGoogle ScholarPubMed
Israelachvili, J.N. 2011 Intermolecular and Surface Forces. Academic press.Google Scholar
Jadhav, S.N. & Ghosh, U. 2022 Effect of interfacial kinetics on the settling of a drop in a viscous medium. Phys. Fluids 34 (4), 042007.10.1063/5.0086538CrossRefGoogle Scholar
Jadhav, S.N., Mandal, S. & Ghosh, U. 2024 Coupled bulk and interfacial transport of surfactants governs the settling of a drop towards a wall. J. Fluid Mech. 987, A41.10.1017/jfm.2024.406CrossRefGoogle Scholar
Janssen, P.J.A. & Anderson, P.D. 2008 Surfactant-covered drops between parallel plates. Chem. Engng Res. Des. 86 (12), 13881396.10.1016/j.cherd.2008.08.014CrossRefGoogle Scholar
Kalogirou, A. & Blyth, M.G. 2019 The role of soluble surfactants in the linear stability of two-layer flow in a channel. J. Fluid Mech. 873, 1848.10.1017/jfm.2019.392CrossRefGoogle Scholar
Kalogirou, A. & Blyth, M.G. 2020 Nonlinear dynamics of two-layer channel flow with soluble surfactant below or above the critical micelle concentration. J. Fluid Mech. 900, A7.10.1017/jfm.2020.480CrossRefGoogle Scholar
Kaushik, A.M., Hsieh, K. & Wang, T.-H. 2018 Droplet microfluidics for high-sensitivity and high-throughput detection and screening of disease biomarkers. Wiley Interdisciplinary Rev.: Nanomedicine Nanobiotechnology 10 (6), e1522.Google ScholarPubMed
Köster, S., 2008 Drop-based microfluidic devices for encapsulation of single cells. Lab on a Chip 8 (7), 11101115.10.1039/b802941eCrossRefGoogle ScholarPubMed
Kralova, I. & Sjöblom, J. 2009 Surfactants used in food industry: a review. J. Disper. Sci. Technol. 30 (9), 13631383.10.1080/01932690902735561CrossRefGoogle Scholar
Kumar, B.V.N.P., Priyadharsini, S.U., Prameela, G.K.S. & Mandal, A.B. 2011 NMR investigations of self-aggregation characteristics of SDS in a model assembled tri-block copolymer solution. J. Colloid Interface Sci. 360 (1), 154162.10.1016/j.jcis.2011.04.008CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Lamba, H., Sathish, K. & Sabikhi, L. 2015 Double emulsions: emerging delivery system for plant bioactives. Food Bioprocess Technol. 8, 709728.10.1007/s11947-014-1468-6CrossRefGoogle Scholar
Langevin, D. 2014 Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu. Rev. Fluid Mech. 46 (1), 4765.10.1146/annurev-fluid-010313-141403CrossRefGoogle Scholar
Leal, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7. Cambridge University Press.10.1017/CBO9780511800245CrossRefGoogle Scholar
Li, M., Liu, H., Zhuang, S. & Goda, K. 2021 Droplet flow cytometry for single-cell analysis. RSC Adv. 11 (34), 2094420960.10.1039/D1RA02636DCrossRefGoogle ScholarPubMed
Lin, T.-S., Hu, W.-F. & Misbah, C. 2020 A direct Poisson solver in spherical geometry with an application to diffusiophoretic problems. J. Comput. Phys. 409, 109362.10.1016/j.jcp.2020.109362CrossRefGoogle Scholar
Lippera, K., Morozov, M., Benzaquen, M. & Michelin, S. 2020 Collisions and rebounds of chemically active droplets. J. Fluid Mech. 886, A17.10.1017/jfm.2019.1055CrossRefGoogle Scholar
Lucassen, J. 1975 Adsorption kinetics in micellar systems. Faraday Discuss. Chem. Soc. 59, 7687.10.1039/dc9755900076CrossRefGoogle Scholar
Luo, Z.Y., Shang, X.L. & Bai, B.F. 2019 Effect of soluble surfactant on the motion of a confined droplet in a square microchannel. Phys. Fluids 31 (11), 117104.10.1063/1.5125949CrossRefGoogle Scholar
Maass, C.C., Krüger, C., Herminghaus, S. & Bahr, C. 2016 Swimming droplets. Annu. Rev. Condens. Matt. Phys. 7 (1), 171193.10.1146/annurev-conmatphys-031115-011517CrossRefGoogle Scholar
Mandal, S., Ghosh, U. & Chakraborty, S. 2016 Effect of surfactant on motion and deformation of compound droplets in arbitrary unbounded Stokes flows. J. Fluid Mech. 803, 200249.10.1017/jfm.2016.497CrossRefGoogle Scholar
Manikantan, H. & Squires, T.M. 2020 Surfactant dynamics: hidden variables controlling fluid flows. J. Fluid Mech. 892, P1.10.1017/jfm.2020.170CrossRefGoogle ScholarPubMed
McKinnon, K.M. 2018 Flow cytometry: an overview. Curr. Protocols Immunol. 120 (1), 5–1.10.1002/cpim.40CrossRefGoogle ScholarPubMed
Michelin, S. 2023 Self-propulsion of chemically active droplets. Annu. Rev. Fluid Mech. 55 (1), 77101.10.1146/annurev-fluid-120720-012204CrossRefGoogle Scholar
Morozov, M. 2020 Adsorption inhibition by swollen micelles may cause multistability in active droplets. Soft Matt. 16 (24), 56245632.10.1039/D0SM00662ACrossRefGoogle ScholarPubMed
Muradoglu, M. & Tryggvason, G. 2008 A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227 (4), 22382262.10.1016/j.jcp.2007.10.003CrossRefGoogle Scholar
Nightingale, A.M., Krishnadasan, S.H., Berhanu, D., Niu, X., Drury, C., McIntyre, R., Valsami-Jones, E. & DeMello, J.C. 2011 A stable droplet reactor for high temperature nanocrystal synthesis. Lab on a Chip 11 (7), 12211227.10.1039/C0LC00507JCrossRefGoogle ScholarPubMed
Pak, O.S., Feng, J. & Stone, H.A. 2014 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech. 753, 535552.10.1017/jfm.2014.380CrossRefGoogle Scholar
Panigrahi, D.P., Santra, S., Banuprasad, T.N., Das, S. & Chakraborty, S. 2021 Interfacial viscosity-induced suppression of lateral migration of a surfactant laden droplet in a nonisothermal Poiseuille flow. Phys. Rev. Fluids 6 (5), 053603.10.1103/PhysRevFluids.6.053603CrossRefGoogle Scholar
Santra, S., Das, S., Das, S.S. & Chakraborty, S. 2018 Surfactant-induced retardation in lateral migration of droplets in a microfluidic confinement. Microfluid Nanofluid 22, 119.10.1007/s10404-018-2109-6CrossRefGoogle Scholar
Schroen, K., Berton-Carabin, C., Renard, D., Marquis, M., Boire, A., Cochereau, R., Amine, C. & Marze, S. 2021 Droplet microfluidics for food and nutrition applications. Micromachines-BASEL 12 (8), 863.10.3390/mi12080863CrossRefGoogle ScholarPubMed
Sharanya, V., Sekhar, G.P. & Rohde, C. 2019 Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow. Phys. Fluids 31 (1), 012110.10.1063/1.5064694CrossRefGoogle Scholar
Sharanya, V., Sekhar, G.P.R. & Rohde, C. 2018 The low surface Péclet number regime for surfactant-laden viscous droplets: influence of surfactant concentration, interfacial slip effects and cross migration. Intl J. Multiphase Flow 107, 82103.10.1016/j.ijmultiphaseflow.2018.05.008CrossRefGoogle Scholar
Stebe, K. J., Lin, S.-Y. & Maldarelli, C. 1991 Remobilizing surfactant retarded fluid particle interfaces. I. Stress-free conditions at the interfaces of micellar solutions of surfactants with fast sorption kinetics. Phys. Fluids A: Fluid Dyn. 3 (1), 320.10.1063/1.857862CrossRefGoogle Scholar
Stebe, K.J. & Maldarelli, C. 1994 Remobilizing surfactant retarded fluid particle interfaces: II. Controlling the surface mobility at interfaces of solutions containing surface active components. J. Colloid Interface Sci. 163 (1), 177189.10.1006/jcis.1994.1094CrossRefGoogle Scholar
Stone, H.A. & Leal, L.G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.CrossRefGoogle Scholar
Stone, H.A., Stroock, A.D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36 (1), 381411.10.1146/annurev.fluid.36.050802.122124CrossRefGoogle Scholar
Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A.P. 2008 Droplet microfluidics. Lab on a Chip 8 (2), 198220.10.1039/b715524gCrossRefGoogle ScholarPubMed
Varvaresou, A. & Iakovou, K. 2015 Biosurfactants in cosmetics and biopharmaceuticals. Lett. Appl. Microbiol. 61 (3), 214223.10.1111/lam.12440CrossRefGoogle ScholarPubMed
Venkataramani, D., Tsulaia, A. & Amin, S. 2020 Fundamentals and applications of particle stabilized emulsions in cosmetic formulations. Adv. Colloid Interface Sci. 283, 102234.10.1016/j.cis.2020.102234CrossRefGoogle Scholar
Vlahovska, P.M., Bławzdziewicz, J. & Loewenberg, M. 2009 Small-deformation theory for a surfactant-covered drop in linear flows. J. Fluid Mech. 624, 293337.10.1017/S0022112008005417CrossRefGoogle Scholar
Vollenbroek, J.C., Nieuwelink, A.-E., Bomer, J.G., Tiggelaar, R.M., van den Berg, A., Weckhuysen, B.M. & Odijk, M. 2023 Droplet microreactor for high-throughput fluorescence-based measurements of single catalyst particle acidity. Microsyst. Nanoengng 9 (1), 39.10.1038/s41378-023-00495-2CrossRefGoogle ScholarPubMed
Wang, Y., Papageorgiou, D.T. & Maldarelli, C. 1999 Increased mobility of a surfactant-retarded bubble at high bulk concentrations. J. Fluid Mech. 390, 251270.10.1017/S0022112099005157CrossRefGoogle Scholar
Yin, H. & Marshall, D. 2012 Microfluidics for single cell analysis. Curr. Opin. Biotechnol. 23 (1), 110119.10.1016/j.copbio.2011.11.002CrossRefGoogle ScholarPubMed
Yuan, H., Tu, R., Tong, X., Lin, Y., Zhang, Y. & Wang, Q. 2022 Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system. J. Indust. Microbiol. Biotechnol. 49 (3), kuac007.10.1093/jimb/kuac007CrossRefGoogle ScholarPubMed
Zhang, L., Wang, Y., Tong, L. & Xia, Y. 2014 Synthesis of colloidal metal nanocrystals in droplet reactors: the pros and cons of interfacial adsorption. Nano Lett. 14 (7), 41894194.10.1021/nl501994qCrossRefGoogle ScholarPubMed
Zhang, Y., Chan, H.F. & Leong, K.W. 2013 Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65 (1), 104120.10.1016/j.addr.2012.10.003CrossRefGoogle ScholarPubMed
Supplementary material: File

Jadhav et al. supplementary material

Jadhav et al. supplementary material
Download Jadhav et al. supplementary material(File)
File 658.9 KB