Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T07:08:10.025Z Has data issue: false hasContentIssue false

Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions

Published online by Cambridge University Press:  29 April 2016

Christian J. Kähler
Affiliation:
Institute of Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, 85577 Neubiberg, Germany
Sven Scharnowski
Affiliation:
Institute of Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, 85577 Neubiberg, Germany
Christian Cierpka*
Affiliation:
Institute of Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, 85577 Neubiberg, Germany
*
Email address for correspondence: christian.cierpka@unibw.de

Abstract

The understanding and accurate prediction of turbulent flow separation on smooth surfaces is still a challenging task because the separation and the reattachment locations are not fixed in space and time. Consequently, reliable experimental data are essential for the validation of numerical flow simulations and the characterization and analysis of the complex flow physics. However, the uncertainty of the existing near-wall flow measurements make a precise analysis of the near-wall flow features, such as separation/reattachment locations and other predicted near-wall flow features which are under debate, often impossible. Therefore, the periodic hill experiment at TU Munich (ERCOFTAC test case 81) was repeated using high resolution particle image velocimetry and particle tracking velocimetry. The results confirm the strong effect of the spatial resolution on the near-wall flow statistics. Furthermore, it is shown that statistically stable values of the turbulent flow variables can only be obtained for averaging times which are challenging to realize with highly resolved large eddy simulation and direct numerical simulation techniques. Additionally, the analysis implies that regions of correlated velocity fluctuations with rather uniform streamwise momentum exist in the flow. Their size in the mean flow direction can be larger than the hill spacing. The possible impact of the correlated turbulent motion on the wake region is discussed, as this interaction might be important for the understanding and control of the flow separation dynamics on smooth bodies.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

All authors contributed equally to the paper.

References

Adrian, R. J., Moin, P. & Moser, R. D. 1987 Stochastic estimation of conditional eddies in turbulent channel flow. In Proceedings of 1987 Summer Progr. Cent. Turb. Res, pp. 719.Google Scholar
Almeida, G. P., Durão, D. F. G. & Heitor, M. V. 1993 Wake flows behind two-dimensional model hills. J. Expl Therm. Fluid Sci. 7, 87101.CrossRefGoogle Scholar
Bailey, S. C. C., Kunkel, G. J., Hultmark, M., Vallikivi, M., Hill, J. P., Meyer, K. A., Tsay, C., Arnold, C. B. & Smits, A. J. 2010 Turbulence measurements using a nanoscale thermal anemometry probe. J. Fluid Mech. 663, 160179.Google Scholar
Bendat, J. S. & Piersol, A. G. 2011 Random Data: Analysis and Measurement Procedures. vol. 729. Wiley.Google Scholar
Bippes, H. & Görtler, H. 1972 Dreidimensionale Störungen in der Grenzschicht an einer konkaven Wand. Acta Mechanica 14, 251267.CrossRefGoogle Scholar
Breuer, M., Peller, N., Rapp, C. & Manhart, M. 2009 Flow over periodic hills – numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433457.CrossRefGoogle Scholar
Buchmann, N. A., Kücükosman, Y. C., Ehrenfried, K. & Kähler, C. J. 2014 Wall pressure signature in compressible turbulent boundary layers. In Progress in Wall Turbulence: Understanding and Modelling, Lille, France, June 18–20, Springer.Google Scholar
Chang, C. Y., Jakirlić, S., Krumbein, B. & Tropea, C. 2015 A novel VLES model for turbulent flow simulations. In 9th International Symposium on Turbulence and Shear Flow Phenomena (TSFP 8), Melbourne, Australia, June 30–July 3.Google Scholar
Cierpka, C., Lütke, B. & Kähler, C. J. 2013a Higher order multi-frame particle tracking velocimetry. Exp. Fluids 54, 1533.Google Scholar
Cierpka, C., Scharnowski, S., Ehlert, M., Manhart, M. & Kähler, C. J. 2013b Characterization of the flow over periodic hills with advanced measurement and evaluation techniques. In 8th International Symposium on Turbulence and Shear Flow Phenomena (TSFP 8), Poiters, France, August 28–30.Google Scholar
Diosady, L. T. & Murman, S. M. 2014 DNS of flows over periodic hills using a discontinous-Galerkin spectral-element method. In 44th AIAA Fluid Dynamics Conference, Atlanta, USA, June 16–20.Google Scholar
Ducros, F., Nicoud, F. & Poinsot, T. 1998 Wall-adapting local eddy-viscosity models for simulations in complex geometries. In Proceedings of 6th ICFD Conference on Numerical Methods for Fluid Dynamics, pp. 293299.Google Scholar
Favre, A. J., Gaviglio, J. J. & Dumas, R. J. 1958 Further space-time correlations of velocity in a turbulent boundary layer. J. Fluid Mech. 3, 344356.Google Scholar
Fröhlich, J., Mellen, C. P., Rodi, W., Temmerman, L. & Leschziner, M. A. 2005 Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 966.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760.Google Scholar
Grant, H. L. 1958 The large eddies of turbulent motion. J. Fluid Mech. 4, 149190.Google Scholar
Günther, A. & von Rohr, P. R. 2003 Large-scale structures in a developed flow over a wavy wall. J. Fluid Mech. 478, 257285.Google Scholar
Hickel, S., Kempe, T. & Adams, N. A. 2008 Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions. J. Theor. Comput. Fluid Dyn. 22, 227242.CrossRefGoogle Scholar
Hussain, A. K. M. F. 1983 Coherent structures reality and myth. Phys. Fluids 26, 28162850.Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Kähler, C. J., Astarita, T., Vlachos, P., Sakakibara, J., Hain, R., Discetti, S., La Foy, R. & Cierpka, C.2016 Main results of the fourth International PIV Challenge. Exp. Fluids (in press).Google Scholar
Kähler, C. J., Scharnowski, S. & Cierpka, C. 2012a On the resolution limit of digital particle image velocimetry. Exp. Fluids 52, 16291639.Google Scholar
Kähler, C. J., Scharnowski, S. & Cierpka, C. 2012b On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52, 16411656.CrossRefGoogle Scholar
Kähler, C. J., Scholz, U. & Ortmanns, J. 2006 Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41, 327341.CrossRefGoogle Scholar
von Kármán, T. 1911 Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Nachr. Akad. Wiss. Goett. 1911, 509517.Google Scholar
von Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164, 192215.Google Scholar
Manhart, M. 2004 A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids 33, 435461.Google Scholar
Manhart, M., Peller, N. & Brun, C. 2008 Near-wall scaling for turbulent boundary layers with adverse pressure gradient. Theor. Comput. Fluid Dyn. 22, 243260.CrossRefGoogle Scholar
Meinhart, C. D. & Adrian, R. J. 1995 On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7, 694696.CrossRefGoogle Scholar
Mellen, C. P., Fröhlich, J. & Rodi, W. 2000 Large eddy simulation of the flow over periodic hills. In 16th IMACS World Congress, Lausanne, August 21–25.Google Scholar
Peller, N., Le-Duc, A., Tremblay, F. & Manhart, M. 2006 High-order stable interpolations for immersed boundary methods. Intl J. Numer. Meth. Fluids 52, 11751193.Google Scholar
Peller, N. & Manhart, M. 2006 Turbulent channel flow with periodic hill constrictions. Notes Numer. Fluid Mech. Multidisciplinary Design 92, 504512.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Prandtl, L. 1905 Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhandlungen des III Intl Math. Kongr Heidelberg, pp. 484491. Teubner.Google Scholar
Prandtl, L. 1925 Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 5, 136139.Google Scholar
Prasad, A. & Wiliamson, C. H. K. 1997 The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375402.Google Scholar
Rapp, C. & Manhart, M. 2011 Flow over periodic hills: an experimental study. Exp. Fluids 51, 247269.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.Google Scholar
Šarić, S., Jakirlić, S., Breuer, M., Jaffrézic, B., Deng, G., Chikhaoui, O., Fröhlich, J., von Terzi, D., Manhart, M. & Peller, N. 2007 Evaluation of detached eddy simulations for predicting the flow over periodic hills. In ESAIM: Proceedings, vol. 16, pp. 133145. EDP Sciences.Google Scholar
Scarano, F. 2002 Iterative image deformation methods in PIV. Meas. Sci. Technol. 13, R1.Google Scholar
Scharnowski, S., Hain, R. & Kähler, C. J. 2012 Reynolds stress estimation up to single-pixel resolution using PIV-measurements. Exp. Fluids 52, 9851002.CrossRefGoogle Scholar
Schröder, A., Schanz, D., Michaelis, D., Cierpka, C., Scharnowski, S. & Kähler, C. J. 2015 Advances of PIV and 4D-PTV ‘Shake-The-Box’ for turbulent flow analysis – the flow over periodic hills. Flow Turbul. Combust. 95, 193209.CrossRefGoogle Scholar
Shirai, K., Pfister, T., Büttner, L., Czarske, J., Müller, H., Becker, S., Lienhart, H. & Durst, F. 2006 Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor. Exp. Fluids 40, 473481.CrossRefGoogle Scholar
Strouhal, V. 1878 Über eine besondere Art der Tonerregung. Ann. Phys. 241, 216251.Google Scholar
Taylor, G. I. 1922 Diffusion by continuous movements. Proc. Lond. Math. Soc. s2–20, 196212.Google Scholar
Temmerman, L., Leschziner, M. A., Mellen, C. P. & Fröhlich, J. 2003 Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. Intl J. Heat Fluid Flow 24, 157180.Google Scholar
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.Google Scholar