Published online by Cambridge University Press: 28 March 2006
Hydromagnetic surface waves propagating on the surface of a finitely conducting fluid are studied experimentally and theoretically. An alternating magnetic field is used, so that the field is largely excluded from the bulk of the fluid. Thus, the magnetic damping of the waves is negligible, and the perfectly conducting d.c. case is simulated. The effects of a finite electromagnetic skin depth, δ, are included in the calculation of the theoretical wave dispersion relation. It is predicted that as δ is increased and becomes comparable to the wavelength of the surface wave, the effect of the magnetic field on the fluid motion is decreased. This prediction is confirmed experimentally.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.