Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T19:16:50.691Z Has data issue: false hasContentIssue false

The influence of fast waves and fluctuations on the evolution of the dynamics on the slow manifold

Published online by Cambridge University Press:  19 September 2014

Jared P. Whitehead*
Affiliation:
Department of Mathematics, Brigham Young University, Provo, UT 84602, USA Department of Mathematics, Harrison Building, University of Exeter, Exeter EX4 4QF, UK
Beth A. Wingate
Affiliation:
Department of Mathematics, Brigham Young University, Provo, UT 84602, USA Department of Mathematics, Harrison Building, University of Exeter, Exeter EX4 4QF, UK
*
Email address for correspondence: whitehead@mathematics.byu.edu

Abstract

The effect of non-slow (typically fast) components of a rotating stratified Boussinesq flow on the dynamics of the slow manifold is quantified using a decomposition that isolates the part of the flow living on the slow manifold. In this system, there are three distinct asymptotic limits with corresponding reduced equations, each defining a slow manifold. All three of these distinct limits, namely rapid rotation, strong stratification, and simultaneous strong stratification and rapid rotation (quasi-geostrophy), are considered. Numerical simulations indicate that, for the geometry considered (triply periodic) and the type of forcing applied, the fluctuations act as a conduit, moving energy onto the slow manifold. This decomposition clarifies how the energy is exchanged when either the stratification or the rotation is weak. In the quasi-geostrophic limit, most of the energy transfer is between slow potential energy and slow kinetic energy, but the energetics due to the fluctuations are less clear. It is observed that the energy off the slow manifold in each case equilibrates to a quasi-steady value.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Baer, F. 1977 Adjustment of initial conditions required to suppress gravity wave oscillations in nonlinear flows. Beitr. Phys. Atmos. 50, 350366.Google Scholar
Baer, F. & Tribbia, J. J. 1977 On complete filtering of gravity modes through nonlinear initialization. Mon. Weath. Rev. 105 (12), 15361539.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamics and Hydro-Magnetic Stability. Clarendon Press.Google Scholar
Charney, J. G. 1947 The dynamics of long waves. J. Meteorol. 4, 135162.Google Scholar
Charney, J. G. 1948 On the scale of atmospheric motions. Geofis. Publ. 17 (2), 117.Google Scholar
Charney, J. G. 1955 The use of primitive equations of motion in numerical forecasting. Tellus 7, 2226.CrossRefGoogle Scholar
Charney, J. G. 1971 Geostrophic tubulence. J. Atmos. Sci. 28 (6), 10871095.Google Scholar
Charney, J. G., Fjortoft, R. & von Neumann, J. 1950 Numerical integration of the barotropic vorticity equation. Tellus 2, 237254.Google Scholar
Charney, J. G. & Phillips, N. A. 1953 Numerical integration of the quasigeostrophic equations for barotropic and simple baroclinic flows. J. Meteorol. 10, 7199.Google Scholar
Chasnov, J. R. 1994 Similarity states of passive scalar transport in isotropic turbulence. Phys. Fluids 6, 10361051.Google Scholar
Conangla, L., Cuxart, J. & Solar, M. R. 2008 Characterisation of the nocturnal boundary layer at a site in northern Spain. Boundary-Layer Meteorol. 128, 255276.CrossRefGoogle Scholar
Coulter, R. L. 1990 A case study of turbulence in the stable nocturnal boundary layer. Boundary-Layer Meteorol. 52, 7591.Google Scholar
Dewar, W. K. & Killworth, P. D. 1995 Do fast gravity waves interact with geostrophic motion? Deep-Sea Res. 42 (7), 10631081.Google Scholar
Eady, E. T. 1949 Long waves and cyclone waves. Tellus 1 (3), 3352.Google Scholar
Embid, P. F. & Majda, A. J. 1996 Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity. Commun. Part. Diff. Equ. 21 (3–4), 619658.Google Scholar
Embid, P. F. & Majda, A. J. 1998 Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers. Geophys. Astrophys. Fluid Dyn. 87 (1–2), 150.CrossRefGoogle Scholar
Emery, W. J., Lee, W. G. & Magaard, L. 1984 Geographic and seasonal distributions of Brunt–Väisälä frequency and Rossby radii in the North Pacific and North Atlantic. J. Phys. Oceanogr. 14, 294317.2.0.CO;2>CrossRefGoogle Scholar
Farge, M. & Sadourny, R. 1989 Wave-vortex dynamics in rotating shallow flow. J. Fluid Mech. 206, 433462.CrossRefGoogle Scholar
Ford, R., McIntyre, M. E. & Norton, W. A. 2000 Balance and the slow quasimanifold: some explicit results. J. Atmos. Sci. 57, 12361254.Google Scholar
Heywood, K. J., Garabato, A. C. N. & Stevens, D. P. 2002 High mixing rates in the abyssal Southern Ocean. Nature 415, 10111014.Google Scholar
Jones, E. P., Rudels, B. & Anderson, L. G. 1995 Deep waters of the Arctic Ocean: origins and circulation. Deep-Sea Res. 42, 737760.Google Scholar
Julien, K. & Knobloch, E. 2007 Reduced models for fluid flows with strong constraints. J. Math. Phys. 48, 065405.Google Scholar
Julien, K., Knobloch, E., Milliff, R. & Werne, J. 2006 Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows. J. Fluid Mech. 555, 233274.Google Scholar
Julien, K., Knobloch, E., Rubio, A. M. & Vasil, G. M. 2012a Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett. 109, 254503.Google Scholar
Julien, K., Knobloch, E. & Werne, J. 1998 A new class of equations for rotationally constrained flows. Theor. Comput. Fluid Dyn. 11, 251261.Google Scholar
Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E. 2012b Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106 (4–5), 392428.CrossRefGoogle Scholar
Khairoutdinov, M., Randall, D. & DeMott, C. 2005 Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci. 62 (7), 21362154.Google Scholar
King, E. M., Sellmach, S. & Aurnou, J. M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691, 568582.CrossRefGoogle Scholar
Klainerman, S. & Majda, A. J. 1981 Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Maths 34 (4), 481524.Google Scholar
Kreiss, H.-O. & Lorenz, J. 1994 On the existence of slow manifolds for problems with different timescales. Phil. Trans. R. Soc. Lond. A 346, 159171.Google Scholar
Kumar, M. S., Anandan, V. K., Rao, T. N. & Reddy, P. N. 2012 A climatological study of the nocturnal boundary layer over a complex-terrain station. J. Appl. Meteorol. Climatol. 51 (4), 813825.Google Scholar
Leith, C. E. 1980 Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37, 958968.Google Scholar
Lelong, P. & Riley, J. J. 1991 Internal wave–vortical mode interactions in strongly stratified flows. J. Fluid Mech. 232, 119.Google Scholar
Liu, Y. & Ecke, R. E. 2009 Heat transport measurements in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. E 80, 036314.Google Scholar
Lorenz, E. N. 1980 Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37, 16851699.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N. 1986 On the existence of a slow manifold. J. Atmos. Sci. 43 (15), 15471557.Google Scholar
Lorenz, E. N. & Krishnamurthy, V. 1987 On the nonexistence of a slow manifold. J. Atmos. Sci. 44 (20), 29402950.Google Scholar
Machenauer, B. 1977 On the dynamics of gravity oscillations in a shallow water model, with application to normal mode initialization. Beitr. Phys. Atmos. 50, 253271.Google Scholar
Mahrt, L., Sun, J., Blumen, W., Delany, T. & Oncley, S. 1998 Nocturnal boundary-layer regimes. Boundary-Layer Meteorol. 88, 255278.Google Scholar
Majda, A. 1984 Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematics Series. Springer.Google Scholar
Majda, A. J. & Grote, M. J. 1997 Model dynamics and vertical collapse in decaying strongly stratified flows. Phys. Fluids 9 (10), 29322940.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.Google Scholar
Riley, J. J. & Lelong, M. P. 2000 Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32, 613657.Google Scholar
Saujani, S. & Shepherd, T. G. 2002 Comments on ‘Balance and the slow quasimanifold: some explicit results’. J. Atmos. Sci. 59, 28742877.Google Scholar
Schochet, S. 1987 Singular limits in bounded domains for quasilinear symmetric hyperbolic systems having a vorticity equation. J. Differ. Equ. 68 (3), 400428.CrossRefGoogle Scholar
Schochet, S. 1994 Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114, 476512.Google Scholar
Smith, L. M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11 (6), 16081622.Google Scholar
Smith, L. M. & Waleffe, F. 2002 Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech. 451, 145168.Google Scholar
Sprague, M., Julien, K., Knobloch, E. & Werne, J. 2006 Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551, 141174.Google Scholar
Staniforth, A. & Wood, N. 2008 Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model. J. Comput. Phys. 227 (7), 34453464.Google Scholar
Stone, P. H. 1966 On non-geostrophic baroclinic stability. J. Atmos. Sci. 45, 390400.Google Scholar
Stone, P. H. 1971 Baroclinic stability under non-hydrostatic conditions. J. Fluid Mech. 45, 659671.Google Scholar
Stone, P. H. 1972 On non-geostrophic baroclinic stability. III. The momentum and heat transports. J. Atmos. Sci. 29 (3), 419426.2.0.CO;2>CrossRefGoogle Scholar
Stone, P. H., Hess, S., Hadlock, R. & Ray, P. 1969 Preliminary results of experiments with symmetric baroclinic instabilities. J. Atmos. Sci. 26 (5), 991996.Google Scholar
Sukhatme, J., Majda, A. J. & Smith, L. M. 2012 Two-dimensional moist stratified turbulence and the emergence of vertically sheared horizontal flows. Phys. Fluids 24 (3), 036602.Google Scholar
Temam, R. M. & Wirosoetisno, D. 2010 Stability of the slow manifold in the primitive equations. SIAM J. Math. Anal. 42 (1), 427458.Google Scholar
Temam, R. & Wirosoetisno, D. 2011 Slow manifolds and invariant sets of the primitive equations. J. Atmos. Sci. 68, 675682.Google Scholar
Timmermans, M. L., Melling, H. & Rainville, L. 2007 Dynamics in the deep Canada Basin, Arctic Ocean, inferred by thermistor-chain time series. J. Phys. Oceanogr. 37, 10661076.Google Scholar
Tribbia, J. J. 1979 Nonlinear initialization on an equatorial beta-plane. Mon. Weath. Rev. 107, 704713.Google Scholar
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press.CrossRefGoogle Scholar
Van Haren, H. & Millot, C. 2005a Gyroscopic waves in the Mediterranean Sea. Geophys. Res. Lett. 32 (24), 14.Google Scholar
Van Haren, H. & Millot, C. 2005b Rectilinear and circular inertial motions in the Western Mediterranean Sea. Deep-Sea Res. I 51, 14411455.Google Scholar
Vanneste, J. 2013 Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech. 45, 145172.Google Scholar
Vanneste, J. & Yavneh, I. 2004 Exponentially small inertia–gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci. 61 (2), 211223.Google Scholar
Ward, M. L. & Dewar, W. K. 2010 Scattering of gravity waves by potential vorticity in a shallow-water fluid. J. Fluid Mech. 663, 478506.Google Scholar
Warn, T. 1986 Statistical mechanical equilibria of the shallow-water equations. Tellus A 38, 111.Google Scholar
Warn, T. 1997 Nonlinear balance and quasi-geostrophic sets. Atmos.-Ocean 35, 135145.Google Scholar
Warn, T. & Ménard, R. 1986 Nonlinear balance and gravity–inertial wave saturation in a simple atmospheric model. Tellus 38A, 285294.CrossRefGoogle Scholar
Werner, S. R., Beardsley, R. C., Lentz, S. J., Hebert, D. L. & Oakey, N. S. 2003 Observations and modeling of the tidal bottom boundary layer on the southern flank of Georges Bank. J. Geophys. Res.: Oceans 108 (C11), 8005.Google Scholar
Wingate, B. A., Embid, P., Holmes-Cerfon, M. & Taylor, M. A. 2011 Low Rossby limiting dynamics for stably stratified flow with finite Froude number. J. Fluid Mech. 676, 546571.Google Scholar
Zhong, J.-Q. & Ahlers, G. 2010 Heat transport and the large-scale circulation in rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 665, 300333.Google Scholar