Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T23:12:52.902Z Has data issue: false hasContentIssue false

Ion steric effects on electrophoresis of a colloidal particle

Published online by Cambridge University Press:  13 November 2009

ADITYA S. KHAIR*
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA
TODD M. SQUIRES
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA
*
Email address for correspondence: akhair@engineering.ucsb.edu

Abstract

We calculate the electrophoretic mobility Me of a spherical colloidal particle, using modified Poisson–Nernst–Planck (PNP) equations that account for steric repulsion between finite sized ions, through Bikerman's mean-field model (Bikerman, Phil. Mag., vol. 33, 1942, p. 384). Ion steric effects are controlled by the bulk volume fraction of ions ν, and for ν = 0 the standard PNP equations are recovered. An asymptotic analysis in the thin-double-layer limit reveals at small zeta potentials (ζ < kBT/e ≈ 25 mV) Me to increase linearly with ζ for all ν, as expected from the Helmholtz–Smoluchowski (HS) formula. For larger ζ, however, it is well known that surface conduction of ions within the double layer reduces Me below the HS result. Crucially, however, in the PNP equations surface conduction becomes significant precisely because of the aphysically large and unbounded counter-ion densities predicted at large ζ. In contrast, ion steric effects impose a limit on the counter-ion density, thereby mitigating surface conduction. Hence, Me does not fall as far below HS for finite sized ions (ν ≠ 0). Indeed, at sufficiently large ν, ion steric effects are so dramatic that a maximum in Me is not observed for physically reasonable values of ζ(≤ 10 kBT/e), in stark contrast to the PNP-based calculations of O'Brien & White (J. Chem. Soc. Faraday Trans. II, vol. 74, 1978, p. 1607) and O'Brien (J. Colloid Interface Sci., vol. 92, 1983, p. 204). Finally, by calculating a Dukhin–Bikerman number characterizing the relative importance of surface conduction, we collapse Me versus ζ data for different ν onto a single master curve.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 61.CrossRefGoogle Scholar
Bazant, M. Z., Kilic, M. S., Storey, B. D. & Ajdari, A. 2009 Towards an understanding of nonlinear electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. In press. Arχiv: http://arxiv.org/abs/0903.4790.Google Scholar
Biesheuvel, P. M. & van Soestbergen, M. 2007 Counterion volume effects in mixed electrical double layers. J. Colloid Interface Sci. 316, 490.CrossRefGoogle ScholarPubMed
Bikerman, J. J. 1942 Structure and capacity of the electrical double layer. Phil. Mag. 33, 384.CrossRefGoogle Scholar
Bohinc, K., Iglic, A., Slivnik, T. & Kralj-Iglic, V. 2002 Charged cylindrical surfaces: effect of finite ion size. Bioelectrochemisty 57, 73.CrossRefGoogle ScholarPubMed
Borukhov, I., Andelman, D. & Orland, H. 1997 Steric effects in electrolytes: a modified Poisson–Boltzmann equation. Phys. Rev. Lett. 79 (3), 435.CrossRefGoogle Scholar
Borukhov, I., Andelman, D. & Orland, H. 2000 Adsorption of large ions from an electrolyte solution: a modified Poisson–Boltzmann equation. Electrochim. Acta 46, 221.CrossRefGoogle Scholar
Carnahan, N. F. & Starling, K. E. 1969 Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635.CrossRefGoogle Scholar
Dukhin, S. S. & Deryaguin, B. V. 1974 Electrokinetic phenomena. In Surface and Colloid Science, vol. 7 (ser. ed. E. Matijevic). Wiley.Google Scholar
Freise, V. 1952 Zur theorie der diffusen doppelschicht. Zeitschrift für Elektrochemie 56, 822.Google Scholar
Huckel, E. 1924 Die Kataphorese der Kugel. Phys. Z 25, 204.Google Scholar
Khair, A. S. & Squires, T. M. 2009 The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys. Fluids 21, 042001.CrossRefGoogle Scholar
Kijlstra, J., van Leeuwen, H. P. & Lyklema, J. 1992 Effects of surface conduction on the electrokinetic properties of colloids. J. Chem. Soc. Faraday Trans. 88, 3441.CrossRefGoogle Scholar
Kilic, M. S., Bazant, M. Z. & Ajdari, A. 2007 a Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 75, 021502.CrossRefGoogle ScholarPubMed
Kilic, M. S., Bazant, M. Z. & Ajdari, A. 2007 b Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations. Phys. Rev. E 75, 021503.CrossRefGoogle ScholarPubMed
Kornyshev, A. A. 2007 Double-layer in ionic liquids: paradigm change? J. Phys. Chem. B 111, 5545.CrossRefGoogle ScholarPubMed
Lopez-Garcia, J. J., Aranda-Rascon, M. J. & Horno, J. 2007 Electrical double layer around a spherical colloid particle: the excluded volume effect. J. Colloid Interface Sci. 316, 196.CrossRefGoogle ScholarPubMed
Lopez-Garcia, J. J., Aranda-Rascon, M. J. & Horno, J. 2008 Excluded volume effect on the electrophoretic mobility of colloidal particles. J. Colloid Interface Sci. 323, 146.CrossRefGoogle ScholarPubMed
Lyklema, J. 1995 Fundamentals of Interface and Colloid Science. Volume II: Solid-Liquid Interfaces. Academic Press.Google Scholar
Mangelsdorf, C. S. & White, L. R. 1990 Effects of Stern-layer conductance on electrokinetic transport properties of colloidal particles. J. Chem. Soc. Faraday Trans. 86, 2859.CrossRefGoogle Scholar
O'Brien, R. W. 1983 The solution of the electrokinetic equations for colloidal particles with thin double layers. J. Colloid Interface Sci. 92, 204.CrossRefGoogle Scholar
O'Brien, R. W. & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. II 74, 1607.CrossRefGoogle Scholar
Paunov, V. N., Dimova, R. I., Kralchevsky, P. A., Broze, G. & Mehreteab, A. 1996 Hydration repulsion between charged surfaces as an interplay of volume exclusion and dielectric saturation effects. J. Colloid Interface Sci. 182, 239.CrossRefGoogle Scholar
Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. 1999 AC electric-field induced fluid flow in microelectrodes. J. Colloid Interface Sci. 217, 420.CrossRefGoogle ScholarPubMed
Reuss, F. 1809 Sur un nouvel effet de le électricité glavanique. Mém. Soc. Imp. Nat. Mosc. 2, 327.Google Scholar
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.CrossRefGoogle Scholar
Shapovalov, V. L. & Brezesinski, G. 2006 Breakdown of the Gouy–Chapman model for highly charged Langmuir monolayers: counterion size effect. J. Phys. Chem. B 110, 10032.CrossRefGoogle ScholarPubMed
Smoluchowski, M. 1903 Contribution à la théorie de l'endosmose électrique et de quelques phenomènes corrélatifs. Bulletin International de l'Académie des Sciences de Cracovie 8, 182.Google Scholar
Squires, T. M. & Bazant, M. Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217.CrossRefGoogle Scholar
Squires, T. M. & Quake, S. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977.CrossRefGoogle Scholar
Storey, B. D., Edwards, L. R., Sabri Kilic, M. & Bazant, M. Z. 2008 Steric effects on ac electro-osmosis in dilute electrolytes. Phys. Rev. E 77, 036317CrossRefGoogle ScholarPubMed
Starting, P. & Wiegel, F. W. 1993 Effects of excluded volume on the electrolyte distribution around a charged sphere. J. Phys. A: Math. Gen. 26, 3383.CrossRefGoogle Scholar
Viovy, J.-L. 2000 Electrophoresis of DNA and other polyelectrolytes: physical mechanisms. Rev. Mod. Phys. 72, 813.CrossRefGoogle Scholar
Weigel, F. W., Strating, P. & Garcia, A. E. 1993 Distribution of electrolytes with excluded volume around a charged DNA molecule. Mod. Phys. Lett. B 7, 483.CrossRefGoogle Scholar