Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T14:06:52.113Z Has data issue: false hasContentIssue false

Knotted vortex filaments in an ideal fluid

Published online by Cambridge University Press:  26 April 2006

J. P. Keener
Affiliation:
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Abstract

Knotted closed-curve solutions of the equation of self-induced vortex motion are studied. It is shown that there are invariant torus knots which translate and rotate as rigid bodies. The general motion of ‘small-amplitude’ torus knots and iterated (cabled) torus knots is described and found to be almost periodic in time, and for some, but not all, initial data, the topology of the knot is shown to be invariant.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Betchov, R. 1965 On the curvature and torsion of an isolated vortex filament. J. Fluid Mech. 22, 471479.Google Scholar
Birman, J. S. & Williams, R. F. 1983a Knotted periodic orbits in dynamical systems I: Lorenz's equations. Topol. 22, 4782.Google Scholar
Birman, J. S. & Williams, R. F. 1983b Knotted periodic orbits in dynamical systems II: Knot holders for fibered knots. Contemp. Maths 20, 160.Google Scholar
Callegari, A. J. & Ting, L. 1978 Motion of a curved vortex filament with decaying vortical core and axial velocity. SIAM J. Appl. Maths 35, 148175.Google Scholar
Chow, S. N. & Hale, J. K. 1982 Methods of Bifurcation Theory. Springer.
Cole, J. D. 1968 Perturbation Methods in Applied Mathematics. Waltham, Ma: Blaisdel.
Crawford, J. D. & Omohundro, S. 1984 On the global structure of period doubling flows. Physica D 13, 161180.Google Scholar
Germano, M. 1983 On the rediscovery of the DaRios intrinsic equations describing the evolution of a filament vortex. Alti VII Congresso Nazionale AIDAA, Vol. 1, pp. 163-170.
Hasimoto, H. 1972 A soliton on a vortex filament. J. Fluid Mech. 51, 477485.Google Scholar
Hockett, K. & Holmes, P. 1987 Nonlinear oscillators, iterated maps, symbolic dynamics, and knotted orbits. Proc. IEEE 75, 10711079.Google Scholar
Holmes, P. J. 1987 Knotted periodic orbits in suspensions of annulus maps.. Proc. R. Soc. Lond. A 411, 351378.Google Scholar
Holmes, P. J. & Williams, R. F. 1985 Knotted periodic orbits in suspensions of Smale's horseshoe: Torus knots and bifurcation sequences. Arch. Rat. Mech. Anal. 90, 115194.Google Scholar
Keener, J. P. 1988a The dynamics of three dimensional scroll waves in excitable media.. Physica D 31, 269276.Google Scholar
Keener, J. P. 1988b Principles of Applied Mathematics: Transformaton and Approximation. Addison-Wesley.
Keener, J. P. 1989 Knotted scroll wave filaments in excitable media.. Physica D 34, 378390.Google Scholar
Keener, J. P. & McLaughlin, D. W. 1977 Solitons under perturbation.. Phys. Rev. A 16, 777790.Google Scholar
Keener, J. P. & Tyson, J. J. 1988 The motion of untwisted untorted scroll waves in Belousov-Zhabotinsky reagent. Science 239, 12841286.Google Scholar
Kida, S. 1981 A vortex moving without change of form. J. Fluid Mech. 112, 397409.Google Scholar
Kida, S. 1982 Stability of a steady vortex filament. J. Phys. Soc. Japan 51, 16551662.Google Scholar
Lamb, G. L. 1981 Elements of Soliton Theory. Wiley-Interscience.
Langer, J. & Singer, D. A. 1984 Knotted elastic curves in 3. J. Lond. Math. Soc. 30, 512520.Google Scholar
Maddocks, J. H. & Keller, J. B. 1987 Ropes in equilibrium. SIAM J. Appl. Maths 47, 11851200.Google Scholar
Massey, W. S. 1967 Algebraic Topology: An Introduction. Harcourt, Brace and World.
Mclaughlin, D. W. & Scott, A. C. 1978 A multisoliton perturbation theory. In Solitons in Action (ed. Lonngren and Scott), Academic.
Moffat, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117120.Google Scholar
Moffat, H. K. 1985 Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals. J. Fluid Mech. 159, 359378.Google Scholar
Schwarz, K. W. 1985 Three-dimensional vortex dynamics in superfluid 4He: Line-line and line-boundary interactions.. Phys. Rev. B 31, 57825803.Google Scholar
Schwarz, K. W. 1988 Three-dimensional vortex dynamics in superfluid 4He: Homogeneous superfluid turbulence.. Phys. Rev. B 38, 23982417.Google Scholar
Stoker, J. J. 1966 Nonlinear Vibrations. Wiley-Interscience.
Stoker, J. J. 1969 Differential Geometry. Wiley-Interscience.
Tracy, E. R. & Chen, H. H. 1988 Nonlinear self-modulation: An exactly solvable model. Phys. Rev. A 37, 815839.Google Scholar