Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T14:38:32.315Z Has data issue: false hasContentIssue false

Laboratory experiments on the tripolar vortex in a rotating fluid

Published online by Cambridge University Press:  26 April 2006

G. J. F. van Heijst
Affiliation:
Institute of Meteorology and Oceanography, University of Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands
R. C. Kloosterziel
Affiliation:
Institute of Meteorology and Oceanography, University of Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands
C. W. M. Williams
Affiliation:
Institute of Meteorology and Oceanography, University of Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands

Abstract

Within the framework of the study of coherent vortex structures as emerging in rotating, quasi-two-dimensional flows, the tripolar vortex is a relatively novel feature. It consists of a symmetric, linear arrangement of three patches of distributed vorticity of alternate signs, and the axis of this configuration rotates about the centre of the core vortex. This paper describes an experimental study of the formation of a tripole from an unstable axisymmetric vortex in a solidly rotating, homogeneous fluid. The flow is visualized by addition of dye, and is measured by streak photography of tracer particles. After digitization, the spatial distributions of the vorticity ω and the stream function ψ are calculated numerically, and 'scatter plots’ of ω versus ψ are presented for the various stages in the tripole formation process. Owing to viscous effects (spin-down by the bottom Ekman layer and lateral entrainment of ambient fluid) the tripole shows an exponential decay, both in its rotation speed and its internal, relative flow. The comparison of the observed flow characteristics with a simple point-vortex model shows reasonable quantitative agreement.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aref, H.: 1979 Motion of three vortices. Phys. Fluids 22, 393400.Google Scholar
Batchelor, G. K.: 1967 An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.
Benzi, R., Patarnello, S. & Santangelo, P., 1987 On the statistical properties of two-dimensional decaying turbulence. Europhys. Lett. 3, 811818.Google Scholar
Benzi, R., Patarnello, S. & Santangelo, P., 1988 Self-similar coherent structures in two-dimensional decaying turbulence. J. Phys. A: Math. Gen. 21, 12211237.Google Scholar
Carnevale, G. F., Kloosterziel, R. C. & Van Heijst, G. J. F.: 1991 Propagation of barotropic vortices over topography in a rotating tank. J. Fluid Mech. (submitted).Google Scholar
Carton, X. J., Fliebl, G. R. & Polvani, L. M., 1989 The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys. Lett. 9, 339344.Google Scholar
Chandbasekhar, S.: 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press, 654 pp.
Drazin, P. G. & Reid, W. H., 1981 Hydrodynamic Stability. Cambridge University Press, 527 pp.
Fliebl, G. R.: 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 349388.Google Scholar
Greenspan, H. P. & Howard, L. N., 1963 On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17, 385404.Google Scholar
Hasegawa, A.: 1985 Self-organization processes in continuous media. Adv. Phys. 34, 142.Google Scholar
Van Heijst, G. J. F. & Flór, J. B. 1989 Dipole formation and collisions in a stratified fluid. Nature 340, 212215.Google Scholar
Van Heijst, G. J. F. & Kloostebziel, R. C. 1989 Tripolar vortices in a rotating fluid. Nature 338, 569571.Google Scholar
Holton, J. R.: 1979 An Introduction to Dynamic Meteorology (2nd edn.). Academic, 391 pp.
Ikeda, M.: 1981 Instability and splitting of mesoscale rings using a two-layer quasi-geostrophic model on an f-plane. J. Phys. Oceanogr. 11, 987998.Google Scholar
Kloostebziel, R. C.: 1990 Barotropic vortices in a rotating fluid. Ph.D. thesis, University of Utrecht, The Netherlands.
Kloostebziel, R. C. & Van Heijst, G. J. F.: 1989 On tripolar vortices. In Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence (ed. J. C. J. Nihoul & B. M. Jamart), pp. 609625. Elsevier.
Kloostebziel, R. C. & Van Heijst, G. J. F.: 1991a An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.Google Scholar
Kloostebziel, R. C. & Van Heijst, G. J. F.: 1991b The evolution of stable barotropic vortices in a rotating free-surface fluid. J. Fluid Mech. (submitted).Google Scholar
Lamb, H.: 1936 Hydrodynamics (6th edn.) Cambridge University Press, 738 pp.
Legras, B., Santangelo, P. & Benzi, R., 1988 High-resolution numerical experiments for forced two-dimensional turbulence. Europhys. Lett. 5, 3742.Google Scholar
Leith, C. E.: 1984 Minimum enstrophy vortices. Phys. Fluids 27, 13881395.Google Scholar
McWllllams, J. C.: 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 2143.Google Scholar
Mobikawa, G. K. & Swenson, E. V., 1971 Interacting motion of rectilinear geostrophic vortices. Phys. Fluids 14, 10581073.Google Scholar
Duc, J. M. Nguyen & Sommeria, J. 1988 Experimental characterization of steady two-dimensional vortex couples. J. Fluid Mech. 192, 175192.Google Scholar
Polvani, L. M. & Carton, X. J., 1990 The tripole: a new coherent vortex structure of incompressible two-dimensional flows. Geophys. Astrophys. Fluid Dyn. 51, 87102.Google Scholar
Sadoubny, S.: 1985 Quasi-geostrophic turbulence: an introduction. In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (ed. M. Ghill), pp. 133158. North-Holland.
Stern, M. E.: 1987 Horizontal entrainment and detrainment in large-scale eddies. J. Phys. Oceanogr. 17, 16881695.Google Scholar
Swenson, M.: 1987 Instability of equivalent barotropic riders. J. Phys. Oceanogr. 17, 492506.Google Scholar
Taylor, J. B.: 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 11391141.Google Scholar