Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T13:20:22.841Z Has data issue: false hasContentIssue false

Laminar post-stall wakes of tapered swept wings

Published online by Cambridge University Press:  24 November 2023

Jean Hélder Marques Ribeiro*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
Jacob Neal
Affiliation:
Department of Mechanical, Aeronautical, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Anton Burtsev
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH, UK
Michael Amitay
Affiliation:
Department of Mechanical, Aeronautical, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Vassilios Theofilis
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH, UK
Kunihiko Taira
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
*
Email address for correspondence: jeanmarques@g.ucla.edu

Abstract

While tapered swept wings are widely used, the influence of taper on their post-stall wake characteristics remains largely unexplored. To address this issue, we conduct an extensive study using direct numerical simulations to characterize the wing taper and sweep effects on laminar separated wakes. We analyse flows behind NACA 0015 cross-sectional profile wings at post-stall angles of attack $\alpha =14^\circ$$22^\circ$ with taper ratios $\lambda =0.27$$1$, leading-edge sweep angles $0^\circ$$50^\circ$ and semi aspect ratios $sAR =1$ and $2$ at a mean-chord-based Reynolds number of $600$. Tapered wings have smaller tip chord length, which generates a weaker tip vortex, and attenuates inboard downwash. This results in the development of unsteadiness over a large portion of the wingspan at high angles of attack. For tapered wings with backward-swept leading edges, unsteadiness emerges near the wing tip. On the other hand, wings with forward-swept trailing edges are shown to concentrate wake-shedding structures near the wing root. For highly swept untapered wings, the wake is steady, while unsteady shedding vortices appear near the tip for tapered wings with high leading-edge sweep angles. For such wings, larger wake oscillations emerge near the root as the taper ratio decreases. While the combination of taper and sweep increases flow unsteadiness, we find that tapered swept wings have more enhanced aerodynamic performance than untapered and unswept wings, exhibiting higher time-averaged lift and lift-to-drag ratio. The current findings shed light on the fundamental aspects of flow separation over tapered wings in the absence of turbulent flow effects.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, SP 13083-860, Brazil.

Present address: Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, USA.

§

Present address: Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.

References

Abbott, I.H. & Von Doenhoff, A.E. 1959 Theory of Wing Sections: Including a Summary of Airfoil Data. Dover.Google Scholar
Ananda, G.K., Sukumar, P.P. & Selig, M.S. 2015 Measured aerodynamic characteristics of wings at low Reynolds numbers. Aerosp. Sci. Technol. 42, 392406.CrossRefGoogle Scholar
Anderson, R.F. 1936 Determination of the characteristics of tapered wings. Tech. Rep. NACA-TR-572. NASA Langley.Google Scholar
Anderson, J.D. 1999 Aircraft Performance and Design. WCB/McGraw-Hill.Google Scholar
Anderson, J.D. 2010 Fundamentals of Aerodynamics. McGraw-Hill.Google Scholar
Bippes, H. & Turk, M. 1980 Windkanalmessungen in einem Rechteckflügel bei anliegender und abgelöster Strömung. Tech. Rep. 251-80 A 18. DFVLR Forschungsbericht IB.Google Scholar
Birch, D., Lee, T., Mokhtarian, F. & Kafyeke, F. 2004 Structure and induced drag of a tip vortex. J. Aircraft 41 (5), 11381145.CrossRefGoogle Scholar
Black, J. 1956 Flow studies of the leading edge stall on a swept-back wing at high incidence. Aeronaut. J. 60 (541), 5160.CrossRefGoogle Scholar
Braza, M., Faghani, D. & Persillon, H. 2001 Successive stages and the role of natural vortex dislocations in three-dimensional wake transition. J. Fluid Mech. 439, 141.CrossRefGoogle Scholar
Breitsamter, C. & Laschka, B. 2001 Vortical flowfield structure at forward swept-wing configurations. J. Aircraft 38 (2), 193207.CrossRefGoogle Scholar
Brès, G.A., Ham, F.E., Nichols, J.W. & Lele, S.K. 2017 Unstructured large-eddy simulations of supersonic jets. AIAA J. 55 (4), 11641184.CrossRefGoogle Scholar
Buchholz, J.H.J. & Smits, A.J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.CrossRefGoogle Scholar
Burtsev, A., He, W., Hayostek, S., Zhang, K., Theofilis, V., Taira, K. & Amitay, M. 2022 Linear modal instabilities around post-stall swept finite wings at low Reynolds numbers. J. Fluid Mech. 944, A6.CrossRefGoogle Scholar
Burtsev, A., Theofilis, V., Ribeiro, J.H.M., Taira, K., Neal, J.M. & Amitay, M. 2023 Wake dynamics of tapered wings. Part III: triglobal linear stability analysis. AIAA Paper 2023-2299.CrossRefGoogle Scholar
Chang, C.-C. 1992 Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond. A 437 (1901), 517525.Google Scholar
Dallmann, U.C. 1988 Three-dimensional vortex structures and vorticity topology. Fluid Dyn. Res. 3 (1–4), 183189.CrossRefGoogle Scholar
Délery, J.M. 2001 Robert Legendre and Henri Werlé: toward the elucidation of three-dimensional separation. Annu. Rev. Fluid Mech. 33, 128.CrossRefGoogle Scholar
Devenport, W.J., Rife, M.C., Liapis, S.I. & Follin, G.J. 1996 The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67106.CrossRefGoogle Scholar
DeVoria, A.C. & Mohseni, K. 2017 On the mechanism of high-incidence lift generation for steadily translating low-aspect-ratio wings. J. Fluid Mech. 813, 110126.CrossRefGoogle Scholar
Dong, L., Choi, K.-S. & Mao, X. 2020 Interplay of the leading-edge vortex and the tip vortex of a low-aspect-ratio thin wing. Exp. Fluids 61 (9), 115.CrossRefGoogle Scholar
Durante, D., Rossi, E. & Colagrossi, A. 2020 Bifurcations and chaos transition of the flow over an airfoil at low Reynolds number varying the angle of attack. Commun. Nonlinear Sci. Numer. Simul. 89, 105285.CrossRefGoogle Scholar
Edstrand, A.M., Sun, Y., Schmid, P.J., Taira, K. & Cattafesta, L.N. 2018 Active attenuation of a trailing vortex inspired by a parabolized stability analysis. J. Fluid Mech. 855, R2.CrossRefGoogle Scholar
Eldredge, J.D. & Jones, A.R. 2019 Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51, 75104.CrossRefGoogle Scholar
Falkner, V.M. 1950 Sweepback and wing taper: the effect of sweepback on the lift, drag, and aerodynamic centre of a tapered wing. Aircraft Engng Aerosp. Technol. 22 (10), 296300.CrossRefGoogle Scholar
Francis, M.S. & Kennedy, D.A. 1979 Formation of a trailing vortex. J. Aircraft 16 (3), 148154.CrossRefGoogle Scholar
Freund, J.B. 1997 Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA J. 35 (4), 740742.CrossRefGoogle Scholar
Freymuth, P., Finaish, F. & Bank, W. 1987 Further visualization of combined wing tip and starting vortex systems. AIAA J. 25 (9), 11531159.CrossRefGoogle Scholar
Gaster, M. 1967 The structure and behaviour of laminar separation bubbles. AGARD CP-4.Google Scholar
Green, S.I. & Acosta, A.J. 1991 Unsteady flow in trailing vortices. J. Fluid Mech. 227, 107134.CrossRefGoogle Scholar
Gursul, I., Gordnier, R. & Visbal, M. 2005 Unsteady aerodynamics of nonslender delta wings. Prog. Aerosp. Sci. 41 (7), 515557.CrossRefGoogle Scholar
Gursul, I. & Wang, Z. 2018 Flow control of tip/edge vortices. AIAA J. 56 (5), 17311749.CrossRefGoogle Scholar
Harper, C.W. & Maki, R.L. 1964 A review of the stall characteristics of swept wings. Tech. Rep. NASA/TN D-2373. NASA, Washington, DC.Google Scholar
He, W., Gioria, R.S., Pérez, J.M. & Theofilis, V. 2017 a Linear instability of low Reynolds number massively separated flow around three NACA airfoils. J. Fluid Mech. 811, 701741.CrossRefGoogle Scholar
He, W., Tendero, J.A., Paredes, P. & Theofilis, V. 2017 b Linear instability in the wake of an elliptic wing. Theor. Comput. Fluid Dyn. 31, 483504.CrossRefGoogle Scholar
Hoarau, Y., Braza, M., Ventikos, Y., Faghani, D. & Tzabiras, G. 2003 Organized modes and the three-dimensional transition to turbulence in the incompressible flow around a NACA 0012 wing. J. Fluid Mech. 496, 6372.CrossRefGoogle Scholar
Hornung, H.G. & Perry, A.E. 1984 Some aspects of three-dimensional separation. Part I. Streamsurface bifurcations. Z. Flugwiss. Weltraumforsch. 8, 7787.Google Scholar
Horton, H.P. 1968 Laminar separation bubbles in two and three dimensional incompressible flow. PhD thesis, Queen Mary University of London.Google Scholar
Huang, Y., Venning, J., Thompson, M.C. & Sheridan, J. 2015 Vortex separation and interaction in the wake of inclined trapezoidal plates. J. Fluid Mech. 771, 341369.CrossRefGoogle Scholar
Huang, R.F., Wu, J.Y., Jeng, J.H. & Chen, R.C. 2001 Surface flow and vortex shedding of an impulsively started wing. J. Fluid Mech. 441, 265292.CrossRefGoogle Scholar
Hunt, J.C.R., Abel, C.J., Peterka, J.A. & Woo, H. 1978 Kinematic studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization. J. Fluid Mech. 86 (1), 179200.CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the Summer Program, Center for Turbulence Research, Stanford, CA, pp. 193–208.Google Scholar
Irving, H.B. 1937 Some notes on tapered wings: the effects of brake flaps, taper and ‘sweep’ on stalling. Aircraft Engng Aerosp. Technol. 9 (2), 3136.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Khalighi, Y., Ham, F., Nichols, J., Lele, S.K. & Moin, P. 2011 Unstructured large eddy simulation for prediction of noise issued from turbulent jets in various configurations. AIAA Paper 2011–2886.CrossRefGoogle Scholar
Lee, J.-J., Hsieh, C.-T., Chang, C.-C. & Chu, C.-C. 2012 Vorticity forces on an impulsively started finite plate. J. Fluid Mech. 694, 464492.CrossRefGoogle Scholar
Li, J., Zhao, X. & Graham, M. 2020 Vortex force maps for three-dimensional unsteady flows with application to a delta wing. J. Fluid Mech. 900, A36.CrossRefGoogle Scholar
Lin, J.C.M. & Pauley, L.L. 1996 Low-Reynolds-number separation on an airfoil. AIAA J. 34 (8), 15701577.CrossRefGoogle Scholar
McCormick, B.W. 1995 Aerodynamics, Aeronautics, and Flight Mechanics. John Wiley & Sons.Google Scholar
Menon, K. & Mittal, R. 2021 Quantitative analysis of the kinematics and induced aerodynamic loading of individual vortices in vortex-dominated flows: a computation and data-driven approach. J. Comput. Phys. 443, 110515.CrossRefGoogle Scholar
Millikan, C.B. 1936 On the stalling of highly tapered wings. J. Aerosp. Sci. 3 (5), 145150.Google Scholar
Mueller, T.J. 2001 Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications. American Institute of Aeronautics and Astronautics, Inc.CrossRefGoogle Scholar
Narasimhamurthy, V.D., Andersson, H.I. & Pettersen, B. 2008 Cellular vortex shedding in the wake of a tapered plate. J. Fluid Mech. 617, 355379.CrossRefGoogle Scholar
Navrose, , , Brion, V. & Jacquin, L. 2019 Transient growth in the near wake region of the flow past a finite span wing. J. Fluid Mech. 866, 399430.CrossRefGoogle Scholar
Neal, J.M. & Amitay, M. 2023 Three-dimensional separation over unswept cantilevered wings at a moderate Reynolds number. Phys. Rev. Fluids 8, 014703.CrossRefGoogle Scholar
Neal, J., Burtsev, A., Ribeiro, J.H.M., Taira, K., Theofilis, V. & Amitay, M. 2023 a Similarities in massive separation across Reynolds numbers for swept and tapered finite span wings. Preprint, arXiv:2308.12442.Google Scholar
Neal, J.M., Gares, B., Amitay, M., Burtsev, A., Theofilis, V., Ribeiro, J.H.M. & Taira, K. 2023 b Wake dynamics of tapered wings. Part II: an experimental study. AIAA Paper 2023-2298.CrossRefGoogle Scholar
Pandi, J.S.S. & Mittal, S. 2019 Wake transitions and laminar separation bubble in the flow past an Eppler 61 airfoil. Phys. Fluids 31 (11), 114102.CrossRefGoogle Scholar
Pandi, J.S.S. & Mittal, S. 2023 Streamwise vortices, cellular shedding and force coefficients on finite wing at low Reynolds number. J. Fluid Mech. 958, A10.CrossRefGoogle Scholar
Pauley, L.L., Moin, P. & Reynolds, W.C. 1990 The structure of two-dimensional separation. J. Fluid Mech. 220, 397411.CrossRefGoogle Scholar
Pelletier, A. & Mueller, T.J. 2000 Low Reynolds number aerodynamics of low-aspect-ratio, thin/flat/cambered-plate wings. J. Aircraft 37 (5), 825832.CrossRefGoogle Scholar
Perry, A.E. & Hornung, H.G. 1984 Some aspects of three-dimensional separation. Part II. Vortex skeletons. Z. Flugwiss. Weltraumforsch. 8, 155160.Google Scholar
Piccirillo, P.S. & Van Atta, C.W. 1993 An experimental study of vortex shedding behind linearly tapered cylinders at low Reynolds number. J. Fluid Mech. 246, 163195.CrossRefGoogle Scholar
Prandtl, L. 1920 Theory of lifting surfaces. Tech. Rep. NACA/TN-9. NASA, Washington, DC.Google Scholar
Quartapelle, L. & Napolitano, M. 1983 Force and moment in incompressible flows. AIAA J. 21 (6), 911913.CrossRefGoogle Scholar
Ribeiro, J.H.M., Taira, K., Neal, J.M., Amitay, M., Burtsev, A. & Theofilis, V. 2023 a Wake dynamics of tapered wings. Part I: a computational study. AIAA Paper 2023-2297.CrossRefGoogle Scholar
Ribeiro, J.H.M., Yeh, C.-A. & Taira, K. 2023 b Triglobal resolvent analysis of swept-wing wakes. J. Fluid Mech. 954, A42.CrossRefGoogle Scholar
Ribeiro, J.H.M., Yeh, C.-A., Zhang, K. & Taira, K. 2022 Wing sweep effects on laminar separated flows. J. Fluid Mech. 950, A23.CrossRefGoogle Scholar
Rockwell, D. 1993 Three-dimensional flow structure on delta wings at high angle-of-attack-experimental concepts and issues. AIAA Paper 1993-0550.CrossRefGoogle Scholar
Rossi, E., Colagrossi, A., Oger, G. & Le Touzé, D. 2018 Multiple bifurcations of the flow over stalled airfoils when changing the Reynolds number. J. Fluid Mech. 846, 356391.CrossRefGoogle Scholar
Schewe, G. 2001 Reynolds-number effects in flow around more-or-less bluff bodies. J. Wind Engng Ind. Aerodyn. 8, 12671289.CrossRefGoogle Scholar
Soule, H.A. & Anderson, R.F. 1940 Design charts relating to the stalling of tapered wings. Tech. Rep. NACA-TR-703. NASA.Google Scholar
Taira, K. & Colonius, T. 2009 Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187207.CrossRefGoogle Scholar
Techet, A.H., Hover, F.S. & Triantafyllou, M.S. 1998 Vortical patterns behind a tapered cylinder oscillating transversely to a uniform flow. J. Fluid Mech. 363, 7996.CrossRefGoogle Scholar
Theofilis, V., Hein, S. & Dallmann, U.C. 2000 On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Phil. Trans. R. Soc. Lond. A 358, 3229–324.CrossRefGoogle Scholar
Tobak, M. & Peake, D.J. 1982 Topology of three-dimensional separated flows. Annu. Rev. Fluid Mech. 14 (1), 6185.CrossRefGoogle Scholar
Toppings, C.E. & Yarusevych, S. 2021 Structure and dynamics of a laminar separation bubble near a wingtip. J. Fluid Mech. 929, A39.CrossRefGoogle Scholar
Toppings, C.E. & Yarusevych, S. 2022 Structure and dynamics of a laminar separation bubble near a wing root: towards reconstructing the complete lsb topology on a finite wing. J. Fluid Mech. 944, A14.CrossRefGoogle Scholar
Torres, G.E. & Mueller, T.J. 2004 Low-aspect-ratio aerodynamics at low Reynolds numbers. AIAA J. 42 (5), 865873.CrossRefGoogle Scholar
Traub, L.W. 2013 Aerodynamic impact of aspect ratio at low Reynolds number. J. Aircraft 50 (2), 626634.CrossRefGoogle Scholar
Traub, L.W., Botero, E., Waghela, R., Callahan, R. & Watson, A. 2015 Effect of taper ratio at low Reynolds number. J. Aircraft 52 (3), 734747.CrossRefGoogle Scholar
Valles, B., Andersson, H.I. & Jenssen, C.B. 2002 Oblique vortex shedding behind tapered cylinders. J. Fluids Struct. 16 (4), 453463.CrossRefGoogle Scholar
Videler, J.J., Stamhuis, E.J. & Povel, G.D.E. 2004 Leading-edge vortex lifts swifts. Science 306 (5703), 19601962.CrossRefGoogle ScholarPubMed
Visbal, M.R. & Garmann, D.J. 2019 Effect of sweep on dynamic stall of a pitching finite-aspect-ratio wing. AIAA J. 57 (8), 32743289.CrossRefGoogle Scholar
Wei, Z., New, T.H. & Cui, Y.D. 2018 Aerodynamic performance and surface flow structures of leading-edge tubercled tapered swept-back wings. AIAA J. 56 (1), 423431.CrossRefGoogle Scholar
Winkelman, A.E. & Barlow, J.B. 1980 Flowfield model for a rectangular planform wing beyond stall. AIAA J. 18 (8), 10061008.CrossRefGoogle Scholar
Yarusevych, S., Sullivan, P.E. & Kawall, J.G. 2009 On vortex shedding from an airfoil in low-Reynolds-number flows. J. Fluid Mech. 632, 245271.CrossRefGoogle Scholar
Yen, S.-C. & Hsu, C.M. 2007 Flow patterns and wake structure of a swept-back wing. AIAA J. 45 (1), 228236.CrossRefGoogle Scholar
Yen, S.-C. & Huang, L.-C. 2009 Flow patterns and aerodynamic performance of unswept and swept-back wings. J. Fluids Engng 131 (11), 111101.CrossRefGoogle Scholar
Yilmaz, T.O. & Rockwell, D. 2012 Flow structure on finite-span wings due to pitch-up motion. J. Fluid Mech. 691, 518545.CrossRefGoogle Scholar
Zhang, K., Hayostek, S., Amitay, M., Burstev, A., Theofilis, V. & Taira, K. 2020 a Laminar separated flows over finite-aspect-ratio swept wings. J. Fluid Mech. 905, R1.CrossRefGoogle Scholar
Zhang, K., Hayostek, S., Amitay, M., He, W., Theofilis, V. & Taira, K. 2020 b On the formation of three-dimensional separated flows over wings under tip effects. J. Fluid Mech. 895, A9.CrossRefGoogle Scholar
Zhang, K., Shah, B. & Bilgen, O. 2022 Low-Reynolds-number aerodynamic characteristics of airfoils with piezocomposite trailing surfaces. AIAA J. 60 (4), 27012706.CrossRefGoogle Scholar
Zhang, K. & Taira, K. 2022 Laminar vortex dynamics around forward-swept wings. Phys. Rev. Fluids 7 (2), 024704.CrossRefGoogle Scholar