Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T19:40:24.711Z Has data issue: false hasContentIssue false

A local approximation model for macroscale transport of biased active Brownian particles in a flowing suspension

Published online by Cambridge University Press:  31 January 2022

Lloyd Fung*
Affiliation:
Department of Aeronautics, Imperial College London, LondonSW7 2AZ, UK
Rachel N. Bearon
Affiliation:
Department of Mathematical Sciences, University of Liverpool, LiverpoolL69 7ZL, UK
Yongyun Hwang
Affiliation:
Department of Aeronautics, Imperial College London, LondonSW7 2AZ, UK
*
Email address for correspondence: lloyd.fung12@imperial.ac.uk

Abstract

A dilute suspension of motile microorganisms subjected to a strong ambient flow, such as algae in the ocean, can be modelled as a population of non-interacting, orientable active Brownian particles (ABPs). Using the Smoluchowski equation (i.e. Fokker–Planck equation in space and orientation), one can describe the non-trivial transport phenomena of ABPs such as taxis and shear-induced migration. This work transforms the Smoluchowski equation into a transport equation, in which the drifts and dispersions can be further approximated as a function of the local flow field. The new model can be applied to any global flow field due to its local nature, unlike previous methods such as those utilising the generalised Taylor dispersion theory. The transformation shows that the overall drift includes both the biased motility of individual particles in the presence of taxis and the shear-induced migration in the absence of taxis. In addition, it uncovers other new drifts and dispersions caused by the interactions between the orientational dynamics and the passive advection–diffusion of ABPs. Finally, the performance of this model is assessed using examples of gyrotactic suspensions, where the proposed model is demonstrated to be most accurate when the biased motility of particles (i.e. taxis) is weak.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alt, W. 1980 Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9 (2), 147177.10.1007/BF00275919CrossRefGoogle ScholarPubMed
Ardekani, M.N., Sardina, G., Brandt, L., Karp-Boss, L., Bearon, R.N. & Variano, E.A. 2017 Sedimentation of inertia-less prolate spheroids in homogenous isotropic turbulence with application to non-motile phytoplankton. J. Fluid Mech. 831, 655674.10.1017/jfm.2017.670CrossRefGoogle Scholar
Aris, R. & Taylor, G.I. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235 (1200), 6777.Google Scholar
Batchelor, G.K. 1970 The stress system in a suspension of free-force particles. J. Fluid Mech. 41, 545570.10.1017/S0022112070000745CrossRefGoogle Scholar
Bearon, R.N. 2003 An extension of generalized Taylor dispersion in unbounded homogeneous shear flows to run-and-tumble chemotactic bacteria. Phys. Fluids 15 (6), 1552.CrossRefGoogle Scholar
Bearon, R.N., Bees, M.A. & Croze, O.A. 2012 Biased swimming cells do not disperse in pipes as tracers: a population model based on microscale behaviour. Phys. Fluids 24 (12), 121902.CrossRefGoogle Scholar
Bearon, R.N. & Hazel, A.L. 2015 The trapping in high-shear regions of slender bacteria undergoing chemotaxis in a channel. J. Fluid Mech. 771, R3.10.1017/jfm.2015.198CrossRefGoogle Scholar
Bearon, R.N., Hazel, A.L. & Thorn, G.J. 2011 The spatial distribution of gyrotactic swimming micro-organisms in laminar flow fields. J. Fluid Mech. 680, 602635.10.1017/jfm.2011.198CrossRefGoogle Scholar
Bees, M.A. 2020 Advances in bioconvection. Annu. Rev. Fluid Mech. 52 (1), 449476.CrossRefGoogle Scholar
Brady, J.F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20 (1), 111157.CrossRefGoogle Scholar
Brenner, H. 1980 General theory of Taylor dispersion phenomena. PCH Physicochem. Hydrodyn. 1 (2–3), 91123.Google Scholar
Bretherton, F.P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14 (2), 284304.10.1017/S002211206200124XCrossRefGoogle Scholar
Chen, H. & Thiffeault, J.-L. 2021 Shape matters: a Brownian microswimmer in a channel. J. Fluid Mech. 916, A15.10.1017/jfm.2021.144CrossRefGoogle Scholar
Chen, S.B. & Jiang, L. 1999 Orientation distribution in a dilute suspension of fibers subject to simple shear flow. Phys. Fluids 11 (10), 28782890.10.1063/1.870146CrossRefGoogle Scholar
Clement, E., Lindner, A., Douarche, C. & Auradou, H. 2016 Bacterial suspensions under flow. Eur. Phys. J.: Spec. Top. 225, 23892406.Google Scholar
Clifton, W., Bearon, R.N. & Bees, M.A. 2018 Enhanced sedimentation of elongated plankton in simple flows. IMA J. Appl. Maths 83 (4), 743766.CrossRefGoogle Scholar
Costanzo, A., Di Leonardo, R., Ruocco, G. & Angelani, L. 2012 Transport of self-propelling bacteria in micro-channel flow. J. Phys.: Condens. Matter 24 (6), 065101.Google ScholarPubMed
Croze, O.A., Ashraf, E.E. & Bees, M.A. 2010 Sheared bioconvection in a horizontal tube. Phys. Biol. 7 (4), 046001.10.1088/1478-3975/7/4/046001CrossRefGoogle Scholar
Croze, O.A., Bearon, R.N. & Bees, M.A. 2017 Gyrotactic swimmer dispersion in pipe flow: testing the theory. J. Fluid Mech. 816, 481506.10.1017/jfm.2017.90CrossRefGoogle Scholar
Croze, O.A., Sardina, G., Ahmed, M., Bees, M.A. & Brandt, L. 2013 Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors. J. R. Soc. Interface 10 (81), 20121041.CrossRefGoogle ScholarPubMed
Delmotte, B., Keaveny, E.E., Plouraboué, F. & Climent, E. 2015 Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method. J. Comput. Phys. 302, 524547.CrossRefGoogle Scholar
Doi, M. & Edwards, S.F. 1988 Brownian motion. In The Theory of Polymer Dynamics, pp. 46–90. Oxford University Press.Google Scholar
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E. & Kessler, J.O. 2004 Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93 (9), 25.CrossRefGoogle ScholarPubMed
Drescher, K., Goldstein, R.E. & Tuval, I. 2010 Fidelity of adaptive phototaxis. Proc. Natl Acad. Sci. USA 107 (25), 1117111176.10.1073/pnas.1000901107CrossRefGoogle ScholarPubMed
Dunkel, J., Heidenreich, S., Drescher, K., Wensink, H.H., Bär, M. & Goldstein, R.E. 2013 Fluid dynamics of bacterial turbulence. Phys. Rev. Lett. 110 (22), 228102.CrossRefGoogle ScholarPubMed
Durham, W.M., Climent, E., Barry, M., De Lillo, F., Boffetta, G., Cencini, M. & Stocker, R. 2013 Turbulence drives microscale patches of motile phytoplankton. Nat. Commun. 4, 2184.10.1038/ncomms3148CrossRefGoogle ScholarPubMed
Durham, W.M., Climent, E. & Stocker, R. 2011 Gyrotaxis in a steady vortical flow. Phys. Rev. Lett. 106 (23), 238102.CrossRefGoogle Scholar
Durham, W.M., Kessler, J.O. & Stocker, R. 2009 Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323 (5917), 10671070.CrossRefGoogle ScholarPubMed
Elgeti, J., Winkler, R.G. & Gompper, G. 2015 Physics of microswimmers—single particle motion and collective behavior: a review. Rep. Prog. Phys. 78 (5), 056601.CrossRefGoogle ScholarPubMed
Ezhilan, B. & Saintillan, D. 2015 Transport of a dilute active suspension in pressure-driven channel flow. J. Fluid Mech. 777, 482522.CrossRefGoogle Scholar
Frankel, I. & Brenner, H. 1989 On the foundations of generalized Taylor dispersion theory. J. Fluid Mech. 204, 97119.10.1017/S0022112089001679CrossRefGoogle Scholar
Frankel, I. & Brenner, H. 1991 Generalized Taylor dispersion phenomena in unbounded homogeneous shear flows. J. Fluid Mech. 230, 147181.CrossRefGoogle Scholar
Frankel, I. & Brenner, H. 1993 Taylor dispersion of orientable brownian particles in unbounded homogeneous shear flows. J. Fluid Mech. 255, 129156.CrossRefGoogle Scholar
Fung, L., Bearon, R.N & Hwang, Y. 2020 Bifurcation and stability of downflowing gyrotactic micro-organism suspensions in a vertical pipe. J. Fluid Mech. 902, A26.CrossRefGoogle Scholar
Fung, L. & Hwang, Y. 2020 A sequence of transcritical bifurcations in a suspension of gyrotactic microswimmers in vertical pipe. J. Fluid Mech. 902, R2.CrossRefGoogle Scholar
Hill, N.A. & Bees, M.A. 2002 Taylor dispersion of gyrotactic swimming micro-organisms in a linear flow. Phys. Fluids 14 (8), 25982605.CrossRefGoogle Scholar
Hinch, E.J. & Leal, L.G. 1972 a The effect of Brownian motion on the rheological properties of a suspensions of non-spherical particles. J. Fluid Mech. 52 (4), 683712.CrossRefGoogle Scholar
Hinch, E.J. & Leal, L.G. 1972 b Note on the rheology of a dilute suspension of dipolar spheres with weak Brownian couples. J. Fluid Mech. 56 (4), 803813.10.1017/S0022112072002666CrossRefGoogle Scholar
Hwang, Y. & Pedley, T.J. 2014 a Bioconvection under uniform shear: linear stability analysis. J. Fluid Mech. 738, 522562.CrossRefGoogle Scholar
Hwang, Y. & Pedley, T.J. 2014 b Stability of downflowing gyrotactic microorganism suspensions in a two-dimensional vertical channel. J. Fluid Mech. 749, 750777.CrossRefGoogle Scholar
Ishikawa, T., Locsei, J.T. & Pedley, T.J. 2008 Development of coherent structures in concentrated suspensions of swimming model micro-organisms. J. Fluid Mech. 615, 401431.CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Jiang, W. & Chen, G. 2019 Dispersion of active particles in confined unidirectional flows. J. Fluid Mech. 877, 134.CrossRefGoogle Scholar
Jiang, W. & Chen, G. 2020 Dispersion of gyrotactic micro-organisms in pipe flows. J. Fluid Mech. 889, A18.CrossRefGoogle Scholar
Kessler, J.O. 1986 Individual and collective fluid dynamics of swimming cells. J. Fluid Mech. 173, 191205.10.1017/S0022112086001131CrossRefGoogle Scholar
Koch, D.L. & Subramanian, G. 2011 Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43 (1), 637659.CrossRefGoogle Scholar
Lovecchio, S., Climent, E., Stocker, R. & Durham, W.M. 2019 Chain formation can enhance the vertical migration of phytoplankton through turbulence. Sci. Adv. 5 (10), eaaw7879.CrossRefGoogle Scholar
Lushi, E., Wioland, H. & Goldstein, R.E. 2014 Fluid flows created by swimming bacteria drive self-organization in confined suspensions. Proc. Natl Acad. Sci. USA 111 (27), 97339738.CrossRefGoogle ScholarPubMed
Manela, A. & Frankel, I. 2003 Generalized Taylor dispersion in suspensions of gyrotactic swimming micro-organisms. J. Fluid Mech. 490, 99127.CrossRefGoogle Scholar
Pedley, T.J. 2010 Instability of uniform micro-organism suspensions revisited. J. Fluid Mech. 647, 335359.CrossRefGoogle Scholar
Pedley, T.J. & Kessler, J.O. 1990 A new continuum model for suspensions of gyrotactic micro-organisms. J. Fluid Mech. 212, 155182.CrossRefGoogle ScholarPubMed
Pedley, T.J. & Kessler, J.O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24 (1), 313358.CrossRefGoogle Scholar
Peng, Z. & Brady, J.F. 2020 Upstream swimming and Taylor dispersion of active Brownian particles. Phys. Rev. Fluids 5 (7), 073102.CrossRefGoogle Scholar
Rusconi, R., Guasto, J.S. & Stocker, R. 2014 Bacterial transport suppressed by fluid shear. Nat. Phys. 10 (3), 212217.CrossRefGoogle Scholar
Saintillan, D. 2010 The dilute rheology of swimming suspensions: a simple kinetic model. Exp. Mech. 50 (9), 12751281.CrossRefGoogle Scholar
Saintillan, D. 2018 Rheology of active fluids. Annu. Rev. Fluid Mech. 50 (1), 563592.10.1146/annurev-fluid-010816-060049CrossRefGoogle Scholar
Saintillan, D. & Shelley, M.J. 2008 Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations. Phys. Rev. Lett. 100 (17), 178103.10.1103/PhysRevLett.100.178103CrossRefGoogle ScholarPubMed
Saintillan, D. & Shelley, M.J. 2015 Theory of active suspensions. In Complex Fluids in Biological Systems (ed. Saverio E. Spagnolie), pp. 319–355. Springer.CrossRefGoogle Scholar
Schoeller, S.F. & Keaveny, E.E. 2018 From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions. J. R. Soc. Interface 15 (140), 20170834.CrossRefGoogle ScholarPubMed
Sierou, A. & Brady, J.F. 2001 Accelerated Stokesian dynamics simulations. J. Fluid Mech. 448, 115146.CrossRefGoogle Scholar
Słomka, J. & Dunkel, J. 2017 Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids. Proc. Natl Acad. Sci. USA 114 (9), 21192124.CrossRefGoogle ScholarPubMed
Subramanian, G. & Koch, D.L. 2009 Critical bacterial concentration for the onset of collective swimming. J. Fluid Mech. 632, 359400.CrossRefGoogle Scholar
Takatori, S.C. & Brady, J.F. 2014 Swim stress, motion, and deformation of active matter: effect of an external field. Soft Matt. 10 (47), 94339445.10.1039/C4SM01409JCrossRefGoogle ScholarPubMed
Takatori, S.C. & Brady, J.F. 2017 Superfluid behavior of active suspensions from diffusive stretching. Phys. Rev. Lett. 118 (1), 018003.CrossRefGoogle ScholarPubMed
Townsend, A., Wilber, H. & Wright, G.B. 2016 Computing with functions in spherical and polar geometries I. The sphere. SIAM J. Sci. Comput. 38 (4), C403C425.CrossRefGoogle Scholar
Vennamneni, L., Nambiar, S. & Subramanian, G. 2020 Shear-induced migration of microswimmers in pressure-driven channel flow. J. Fluid Mech. 890, A15.CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49 (1), 249276.CrossRefGoogle Scholar
Wan, K.Y. & Goldstein, R.E. 2014 Rhythmicity, recurrence, and recovery of flagellar beating. Phys. Rev. Lett. 113 (23), 238103.CrossRefGoogle ScholarPubMed
Wensink, H.H., Dunkel, J., Heidenreich, S., Drescher, K., Goldstein, R.E., Löwen, H. & Yeomans, J.M. 2012 Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109 (36), 14308.CrossRefGoogle ScholarPubMed
Williams, C.R. & Bees, M.A. 2011 Photo-gyrotactic bioconvection. J. Fluid Mech. 678, 4186.CrossRefGoogle Scholar
Wioland, H., Woodhouse, F.G., Dunkel, J., Kessler, F.O. & Goldstein, R.E. 2013 Confinement stabilizes a bacterial suspension into a spiral vortex. Phys. Rev. Lett. 110 (26), 268102.CrossRefGoogle ScholarPubMed
Zia, R.N. & Brady, J.F. 2010 Single-particle motion in colloids: force-induced diffusion. J. Fluid Mech. 658, 188210.10.1017/S0022112010001606CrossRefGoogle Scholar

Fung et al. supplementary movie 1

See pdf file for movie caption

Download Fung et al. supplementary movie 1(Video)
Video 10.5 MB

Fung et al. supplementary movie 2

See pdf file for movie caption

Download Fung et al. supplementary movie 2(Video)
Video 11 MB

Fung et al. supplementary movie 3

See pdf file for movie caption

Download Fung et al. supplementary movie 3(Video)
Video 6 MB

Fung et al. supplementary movie 4

See pdf file for movie caption

Download Fung et al. supplementary movie 4(Video)
Video 1.7 MB

Fung et al. supplementary movie 5

See pdf file for movie caption

Download Fung et al. supplementary movie 5(Video)
Video 14.4 MB

Fung et al. supplementary movie 6

See pdf file for movie caption

Download Fung et al. supplementary movie 6(Video)
Video 5.2 MB
Supplementary material: PDF

Fung et al. supplementary material

Captions for movies 1-6

Download Fung et al. supplementary material(PDF)
PDF 17.2 KB