Article contents
Local implications for self-similar turbulent plume models
Published online by Cambridge University Press: 07 March 2007
Abstract
The local implications of the well-known flux conservation equations of Morton et al. (Proc. R. Soc. Lond. A, vol. 234, 1956, p.1) for plumes and jets are considered. Given the vertical velocity distributions of a model plume or jet, the divergence-free radial velocity distributions are calculated. It is shown that in general the velocity of the plume boundary is not described by the local total fluid velocity in this way. A two-fluid model tracking the evolution of both ‘plume’ and ‘ambient’ fluid is proposed which resolves this apparent inconsistency and also provides a way of explicitly describing the mixing process within a model plume. The plume boundary acts as a phase boundary across which ambient fluid is entrained, and the plume boundary moves at the velocity of the plume fluid. The difference between the plume-fluid radial velocity and the total fluid velocity quantifies in a natural way the purely horizontal entrainment flux of ambient fluid into the plume across the phase boundary at the plume edge.
- Type
- Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2007
References
REFERENCES
- 11
- Cited by