Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T02:54:36.433Z Has data issue: false hasContentIssue false

Mass flow rate measurement of thermal creep flow from transitional to slip flow regime

Published online by Cambridge University Press:  20 April 2016

Hiroki Yamaguchi*
Affiliation:
Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
Pierre Perrier
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 5 rue Enrico Fermi, 13453 Marseille, France
Minh Tuan Ho
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 5 rue Enrico Fermi, 13453 Marseille, France James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK
J. Gilbert Méolans
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 5 rue Enrico Fermi, 13453 Marseille, France
Tomohide Niimi
Affiliation:
Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
Irina Graur
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 5 rue Enrico Fermi, 13453 Marseille, France
*
Email address for correspondence: hiroki@nagoya-u.jp

Abstract

Measurements of the thermal creep flow through a single rectangular microchannel connected to two tanks maintained initially at the same pressure, but at different temperatures, are carried out for five noble gas species, over a large range of pressure and for two temperature differences between the tanks. The time-dependent pressure variations in both cold and hot tanks are investigated, and the temperature-driven (thermal creep) mass flow rate between two tanks is calculated from these data for the rarefaction parameter ranging from the transitional to slip flow regime. The measured mass flow rate is compared with the numerical solution of the S-model kinetic equation, and they show good agreement. A novel approximate expression to calculate the temperature-driven mass flow rate in the transitional and slip flow regimes is proposed. This expression provides results in good agreement with the measured values of the mass flow rate. In the slip flow regime, the thermal slip coefficient is calculated by employing the previously reported methodology, and the influence of the nature of the gas on this coefficient is investigated. The measured values of the thermal slip coefficient agree well with the values available in the literature, indicating that this coefficient is independent of the shape of a channel.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexeenko, A. A., Gimelshein, S. F., Muntz, E. P. & Ketsdever, A. D. 2006 Kinetic modeling of temperature driven flows in short microchannels. Intl J. Therm. Sci. 45 (11), 10451051.CrossRefGoogle Scholar
Annis, B. K. 1972 Thermal creep in gases. J. Chem. Phys. 57 (7), 28982905.CrossRefGoogle Scholar
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Science Publications, Oxford University Press.Google Scholar
Cercignani, C. 1990 Mathematical Methods in Kinetic Theory. Plenum.CrossRefGoogle Scholar
Dongari, N. & Agrawal, A. 2012 Modeling of Navier–Stokes equations for high Knudsen number gas flows. Intl J. Heat Mass Transfer 55, 43524358.CrossRefGoogle Scholar
Graur, I. & Ho, M. T. 2014 Rarefied gas flow through a long rectangular channel of variable cross section. Vacuum 101, 328332.CrossRefGoogle Scholar
Gupta, N. K., An, S. & Gianchandani, Y. B. 2012 A Si-micromachined 48-stage Knudsen pump for on-chip vacuum. J. Micromech. Microengng 22 (10), 105026.CrossRefGoogle Scholar
Gupta, N. K. & Gianchandani, Y. B. 2008 Thermal transpiration in zeolites: a mechanism for motionless gas pumps. Appl. Phys. Lett. 93, 193511.CrossRefGoogle Scholar
Hadj Nacer, M., Graur, I., Perrier, P., Méolans, J. G. & Wuest, M. 2014 Gas flow through microtubes with different internal surface coatings. J. Vac. Sci. Technol. A 32, 021601.CrossRefGoogle Scholar
Han, Y., Muntz, E. P., Alexeenko, A. & Young, M. 2007 Experimental and computational studies of temperature gradient-driven molecular transport in gas flows through nano/microscale channels. Nanoscale Microscale Thermophys. Engng 11 (1), 151175.CrossRefGoogle Scholar
Kogan, M. N. 1969 Rarefied Gas Dynamics. Plenum.CrossRefGoogle Scholar
Loyalka, S. K. 1975 Kinetic theory of thermal transpiration and mechanocaloric effects. II. J. Chem. Phys. 63 (9), 40544060.CrossRefGoogle Scholar
Loyalka, S. K. & Hickey, K. A. 1989 Plane Poiseuille flow: near continuum results for a rigid sphere gas. Physica A 160, 395408.CrossRefGoogle Scholar
Loyalka, S. K. & Hickey, K. A. 1991 Kinetic theory of thermal transpiration and the mechanocaloric effect: planar flow of a rigid sphere gas with arbitrary accommodation at the surface. J. Vac. Sci. Technol. A 9, 158163.Google Scholar
Martini, V., Bernardini, S., Bendahan, M., Aguir, K., Perrier, P. & Graur, I. 2012 Microfluidic gas sensor with integrated pumping system. Sensors Actuators B 170, 4550.CrossRefGoogle Scholar
Ohwada, T., Sone, Y. & Aoki, K. 1989 Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1 (9), 15881599.CrossRefGoogle Scholar
Passian, A., Warmack, R. J., Ferrell, T. L. & Thundat, T. 2003 Thermal transpiration at the microscale: a Crookes cantilever. Phys. Rev. Lett. 90 (12), 124503.CrossRefGoogle ScholarPubMed
Porodnov, B., Kulev, A. N. & Tuchvetov, F. T. 1978 Thermal transpiration in a circular capillary with a small temperature difference. J. Fluid Mech. 88 (4), 609622.Google Scholar
Rojas-Cárdenas, M., Graur, I., Perrier, P. & Méolans, J. G. 2011 Thermal transpiration flow: a circular cross-section microtube submitted to a temperature gradient. Phys. Fluids 23, 031702.CrossRefGoogle Scholar
Rojas-Cárdenas, M., Graur, I., Perrier, P. & Méolans, J. G. 2013 Time-dependent experimental analysis of a thermal transpiration rarefied gas flow. Phys. Fluids 25, 072001.CrossRefGoogle Scholar
Rojas-Cárdenas, M., Graur, I., Perrier, P. & Méolans, J. G. 2015 A new method to measure the thermal slip coefficient. Intl J. Heat Mass Transfer 88, 766774.CrossRefGoogle Scholar
Sharipov, F. 1999 Non-isothermal gas flow through rectangular microchannels. J. Micromech. Microengng 9 (4), 394401.CrossRefGoogle Scholar
Sharipov, F. 2011 Data on the velocity slip and temperature jump on a gas–solid interface. J. Phys. Chem. Ref. Data 40 (2), 023101.Google Scholar
Sharipov, F. & Bertoldo, G. 2009 Poiseuille flow and thermal creep based on the Boltzmann equation with the Lennard-Jones potential over a wide range of the Knudsen number. Phys. Fluids 21, 067101.CrossRefGoogle Scholar
Sharipov, F. & Seleznev, V. 1998 Data on internal rarefied gas flows. J. Phys. Chem. Ref. Data 27 (6), 657706.CrossRefGoogle Scholar
Sone, Y. 2002 Kinetic Theory and Fluid Mechanics. Birkhäuser.CrossRefGoogle Scholar
Stvorik, T. S., Park, H. S. & Loyalka, S. K. 1978 Thermal transpiration: a comparison of experiment and theory. J. Vac. Sci. Technol. 15 (6), 18441852.Google Scholar
Takaishi, T. & Sensui, Y. 1963 Thermal transpiration effect of hydrogen, rare gases and methane. Trans. Faraday Soc. 59, 25032514.CrossRefGoogle Scholar
Vargo, S. E., Muntz, E. P., Shiflett, G. R. & Tang, W. C. 1999 Knudsen compressor as a micro- and macroscale vacuum pump without moving parts or fluids. J. Vac. Sci. Technol. A 17, 23082313.CrossRefGoogle Scholar
Yamaguchi, H., Matsuda, Y. & Niimi, T. 2012 Tangential momentum accommodation coefficient measurements for various materials and gas species. J. Phys.: Conf. Ser. 362, 012035.Google Scholar
Yamaguchi, H., Rojas-Cárdenas, M., Perrier, P., Graur, I. & Niimi, T. 2014 Thermal transpiration flow through a single rectangular channel. J. Fluid Mech. 744, 169182.CrossRefGoogle Scholar
Young, M., Han, Y. L., Muntz, E. P., Shiflett, G., Ketsdever, A. & Green, A. 2003 Thermal transpiration in microsphere membranes. In AIP Conference Proceedings 663, pp. 743751. AIP.CrossRefGoogle Scholar