Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T02:30:58.089Z Has data issue: false hasContentIssue false

New exact Betchov-like relation for the helicity flux in homogeneous turbulence

Published online by Cambridge University Press:  11 May 2023

Damiano Capocci*
Affiliation:
Department of Physics and INFN, University of Rome Tor Vergata, Rome, Italy
Perry L. Johnson
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-2700, USA
Sean Oughton
Affiliation:
Department of Mathematics, University of Waikato, Hamilton, New Zealand
Luca Biferale
Affiliation:
Department of Physics and INFN, University of Rome Tor Vergata, Rome, Italy
Moritz Linkmann*
Affiliation:
School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, UK
*
Email addresses for correspondence: capocci@roma2.infn.it, moritz.linkmann@ed.ac.uk
Email addresses for correspondence: capocci@roma2.infn.it, moritz.linkmann@ed.ac.uk

Abstract

In homogeneous and isotropic turbulence, the relative contributions of different physical mechanisms to the energy cascade can be quantified by an exact decomposition of the energy flux (Johnson, Phys. Rev. Lett., vol. 124, 2020, 104501; J. Fluid Mech., vol. 922, 2021, A3). We extend the formalism to the transfer of kinetic helicity across scales, important in the presence of large-scale mirror‐breaking mechanisms, to identify physical processes resulting in helicity transfer and quantify their contributions to the mean flux in the inertial range. All subfluxes transfer helicity from large to small scales. Approximately 50 % of the mean flux is due to the scale-local vortex flattening and vortex twisting. We derive a new exact relation between these effects, similar to the Betchov relation for the energy flux, revealing that the mean contribution of the former is three times larger than that of the latter. Multi-scale effects account for the remaining 50 % of the mean flux, with approximate equipartition between multi-scale vortex flattening, twisting and entangling.

Type
JFM Rapids
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexakis, A. 2017 Helically decomposed turbulence. J. Fluid Mech. 812, 752770.CrossRefGoogle Scholar
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767–769, 1101.CrossRefGoogle Scholar
Baerenzung, J., Politano, H., Ponty, Y. & Pouquet, A. 2008 Spectral modeling of turbulent flows and the role of helicity. Phys. Rev. E 77, 046303.CrossRefGoogle ScholarPubMed
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497504.CrossRefGoogle Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108, 164501.CrossRefGoogle ScholarPubMed
Biferale, L., Musacchio, S. & Toschi, F. 2013 Split energy-helicity cascades in three dimensional homogeneous and isotropic turbulence. J. Fluid Mech. 730, 309327.CrossRefGoogle Scholar
Brandenburg, A. 2001 The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical magnetohydrodynamic turbulence. Astrophys. J. 550, 824840.CrossRefGoogle Scholar
Brandenburg, A. & Subramanian, K. 2005 Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1209.CrossRefGoogle Scholar
Brissaud, A., Frisch, U., Léorat, J., Lesieur, M. & Mazure, A. 1973 Helicity cascades in fully developed isotropic turbulence. Phys. Fluids 16, 13661367.CrossRefGoogle Scholar
Carbone, M. & Wilczek, M. 2022 Only two Betchov homogeneity constraints exist for isotropic turbulence. J. Fluid Mech. 948, R2.CrossRefGoogle Scholar
Chen, Q., Chen, S. & Eyink, G.L. 2003 a The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15, 361374.CrossRefGoogle Scholar
Chen, Q., Chen, S., Eyink, G.L. & Holm, D.D. 2003 b Intermittency in the joint cascade of energy and helicity. Phys. Rev. Lett. 90, 214503.CrossRefGoogle ScholarPubMed
Constantin, P. & Majda, A. 1988 The Beltrami spectrum for incompressible flows. Commun. Math. Phys. 115, 435456.CrossRefGoogle Scholar
Deusebio, E. & Lindborg, E. 2014 Helicity in the Ekman boundary layer. J. Fluid Mech. 755, 654671.CrossRefGoogle Scholar
Eyink, G.L. 2005 Locality of turbulent cascades. Physica D 207, 91116.CrossRefGoogle Scholar
Eyink, G.L. 2006 Multi-scale gradient expansion of the turbulent stress tensor. J. Fluid Mech. 549, 159190.CrossRefGoogle Scholar
Germano, M. 1992 Turbulence — the filtering approach. J. Fluid Mech. 238, 325336.CrossRefGoogle Scholar
Gledzer, E.B. & Chkhetiani, O.G. 2015 Inverse energy cascade in developed turbulence at the breaking of the symmetry of helical modes. J. Expl Theor. Phys. Lett. 102, 465472.CrossRefGoogle Scholar
Herring, J.R. 1974 Approach of axisymmetric turbulence to isotropy. Phys. Fluids 17, 859872.CrossRefGoogle Scholar
Inagaki, K., Yokoi, N. & Hamba, F. 2017 Mechanism of mean flow generation in rotating turbulence through inhomogeneous helicity. Phys. Rev. Fluids 2, 114605.CrossRefGoogle Scholar
Johnson, P.L. 2020 Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions. Phys. Rev. Lett. 124, 104501.CrossRefGoogle ScholarPubMed
Johnson, P.L. 2021 On the role of vorticity stretching and strain self-amplification in the turbulence energy cascade. J. Fluid Mech. 922, A3.CrossRefGoogle Scholar
Kessar, M., Plunian, F., Stepanov, R. & Balarac, G. 2015 Non-Kolmogorov cascade of helicity-driven turbulence. Phys. Rev. E 92, 031004(R).CrossRefGoogle ScholarPubMed
Kraichnan, R. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745752.CrossRefGoogle Scholar
Li, Y., Meneveau, C., Chen, S. & Eyink, G.L. 2006 Subgrid-scale modeling of helicity and energy dissipation in helical turbulence. Phys. Rev. E 74, 026310.CrossRefGoogle ScholarPubMed
Lilly, D.K. 1986 The structure, energetics, and propagation of rotating convective storms. Part II: helicity and storm stabilization. J. Atmos. Sci. 43, 126140.2.0.CO;2>CrossRefGoogle Scholar
Linkmann, M. 2018 Effects of helicity on dissipation in homogeneous box turbulence. J. Fluid Mech. 856, 79102.CrossRefGoogle Scholar
Linkmann, M.F., Berera, A., McKay, M.E. & Jäger, J. 2016 Helical mode interactions and spectral energy transfer in magnetohydrodynamic turbulence. J. Fluid Mech. 791, 6196.CrossRefGoogle Scholar
Linkmann, M.F., Sahoo, G., McKay, M.E., Berera, A. & Biferale, L. 2017 Effects of magnetic and kinetic helicities on the growth of magnetic fields in laminar and turbulent flows by helical Fourier decomposition. Astrophys. J. 836, 26.CrossRefGoogle Scholar
Milanese, L.M., Loureiro, N.F. & Boldyrev, S. 2021 Dynamic phase alignment in Navier–Stokes turbulence. Phys. Rev. Lett. 127, 274501.CrossRefGoogle ScholarPubMed
Mininni, P.D. & Pouquet, A.G. 2010 a Rotating helical turbulence. I. Global evolution and spectral behavior. Phys. Fluids 22, 035105.CrossRefGoogle Scholar
Mininni, P.D. & Pouquet, A.G. 2010 b Rotating helical turbulence. II. Intermittency, scale invariance, and structures. Phys. Fluids 22, 035106.CrossRefGoogle Scholar
Moffatt, H.K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117129.CrossRefGoogle Scholar
Moffatt, H.K. 2014 Helicity and singular structures in fluid dynamics. Proc. Natl Acad. Sci. 111 (10), 36633670.CrossRefGoogle ScholarPubMed
Sahoo, G., Alexakis, A. & Biferale, L. 2017 Discontinuous transition from direct to inverse cascade in three-dimensional turbulence. Phys. Rev. Lett. 118, 164501.CrossRefGoogle ScholarPubMed
Sahoo, G., Bonaccorso, F. & Biferale, L. 2015 Role of helicity for large- and small-scale turbulent fluctuations. Phys. Rev. E 92, 051002.CrossRefGoogle ScholarPubMed
Scheeler, M.W., van Rees, W.M., Kedia, H., Kleckner, D. & Irvine, W.T.M. 2017 Complete measurement of helicity and its dynamics in vortex tubes. Science 357, 487491.CrossRefGoogle ScholarPubMed
Steenbeck, M., Krause, F. & Rädler, K.-H. 1966 Berechnung der mittleren Lorentz–Feldstärke v x B für ein elektrisch leitendes Medium in turbulenter, durch Coriolis–Kräfte beeinflußter Bewegung. Z. Naturforsch. A 21, 369376.CrossRefGoogle Scholar
Stepanov, R., Golbraikh, E., Frick, P. & Shestakov, A. 2015 Hindered energy cascade in highly helical isotropic turbulence. Phys. Rev. Lett. 115, 234501.CrossRefGoogle ScholarPubMed
Tobias, S.M., Cattaneo, F. & Boldyrev, S. 2013 MHD dynamos and turbulence. In Ten Chapters in Turbulence (ed. P.A. Davidson, Y. Kaneda, & K.R. Sreenivasan). Cambridge University Press.CrossRefGoogle Scholar
Vela-Martín, A. 2022 Subgrid-scale models of isotropic turbulence need not produce energy backscatter. J. Fluid Mech. 937, A14.CrossRefGoogle Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4, 350363.CrossRefGoogle Scholar
Yan, Z., Li, X., Yu, C., Wang, J. & Chen, S. 2020 Dual channels of helicity cascade in turbulent flows. J. Fluid Mech. 894, R2.CrossRefGoogle Scholar
Yokoi, N. & Yoshizawa, A. 1993 Statistical analysis of the effects of helicity in inhomogeneous turbulence. Phys. Fluids A 5, 464477.CrossRefGoogle Scholar
Yu, C, Hu, R., Yan, Z. & Li, X. 2022 Helicity distributions and transfer in turbulent channel flows with streamwise rotation. J. Fluid Mech. 940, A18.CrossRefGoogle Scholar