Hostname: page-component-6bb9c88b65-spzww Total loading time: 0 Render date: 2025-07-24T08:56:06.111Z Has data issue: false hasContentIssue false

New insights into the cavitation erosion by bubble collapse at moderate stand-off distances

Published online by Cambridge University Press:  17 July 2025

Zhesheng Zhao
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin, PR China
Shuai Li
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin, PR China
Chengwang Xiong*
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin, PR China Nanhai Institute of Harbin Engineering University, Sanya 572024, PR China
Pu Cui
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin, PR China
Shiping Wang
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin, PR China Nanhai Institute of Harbin Engineering University, Sanya 572024, PR China
A-Man Zhang
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin, PR China Nanhai Institute of Harbin Engineering University, Sanya 572024, PR China
*
Corresponding author: Chengwang Xiong, chengwangxiong@foxmail.com

Abstract

Non-spherical bubble collapses near solid boundaries, generating water hammer pressures and shock waves, were recognized as key mechanisms for cavitation erosion. However, there is no agreement on local erosion patterns, and cavitation erosion damage lacks quantitative analysis. In our experiments, five distinct local erosion patterns were identified on aluminium sample surfaces, resulting from the collapse of laser-induced cavitation bubbles at moderate stand-off distances of $0.4\leqslant \gamma \leqslant 2.2$, namely bipolar, monopolar, annular, solar-halo and central. Among them, the bipolar and monopolar patterns exhibit the most severe cavitation erosion when the toroidal bubbles undergo asymmetrical collapse along the circumferential direction during the second cycle. Shadowgraphy visualization revealed that asymmetrical collapse caused shockwave focusing through head-on collision and oblique superposition of wavefronts. This led to the variations in toroidal bubble radii and the positions of maximum erosion depth not matching at certain stand-off distances. Both initial plasma asymmetry and bubble–wall stand-off distance were critical in determining circumferential asymmetrical collapse behaviours. At large initial aspect ratios, the elliptical jet tips form during the contraction process, resulting in the toroidal bubble collapsing from regions with smaller curvature radii, ultimately converging to the colliding point along the circumferential direction. Our three-dimensional simulations using OpenFOAM successfully reproduce the key features of circumferentially asymmetrical bubble collapse. This study provides new insights into the non-spherical near-wall bubble collapse dynamics and provides a foundation for developing predictive models for cavitation erosion.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Zhesheng Zhao and Shuai Li contributed equally to this work as co-first authors.

References

Abedini, M., Hanke, S. & Reuter, F. 2023 In situ measurement of cavitation damage from single bubble collapse using high-speed chronoamperometry. Ultrason. Sonochem. 92, 106272.10.1016/j.ultsonch.2022.106272CrossRefGoogle ScholarPubMed
Arabnejad, M.H., Amini, A., Farhat, M. & Bensow, R.E. 2020 Hydrodynamic mechanisms of aggressive collapse events in leading edge cavitation. J. Hydrodyn. 32 (1), 619.10.1007/s42241-020-0002-8CrossRefGoogle Scholar
Beig, S.A., Aboulhasanzadeh, B. & Johnsen, E. 2018 Temperatures produced by inertially collapsing bubbles near rigid surfaces. J. Fluid Mech. 852, 105125.10.1017/jfm.2018.525CrossRefGoogle Scholar
Blake, J.R. & Gibson, D.C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 (1), 99123.10.1146/annurev.fl.19.010187.000531CrossRefGoogle Scholar
Blake, J.R., Taib, B.B. & Doherty, G. 1986 Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479497.10.1017/S0022112086000988CrossRefGoogle Scholar
Brackbill, J.U., Kothe, D.B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.10.1016/0021-9991(92)90240-YCrossRefGoogle Scholar
Brujan, E.A., Keen, G.S., Vogel, A. & Blake, J.R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14 (1), 8592.10.1063/1.1421102CrossRefGoogle Scholar
Cao, Y., Peng, X.X., Yan, K., Xu, L. & Shu, L. 2017 A qualitative study on the relationship between cavitation structure and erosion region around a 3d twisted hydrofoil by painting method. In Fifth International Symposium on Marine Propulsors. Finland.Google Scholar
Chahine, G.L. & Hsiao, C.-T. 2015 Modelling cavitation erosion using fluid–material interaction simulations. Interface Focus 5 (5), 20150016.10.1098/rsfs.2015.0016CrossRefGoogle ScholarPubMed
Dabiri, S., Sirignano, W.A. & Joseph, D.D. 2010 Interaction between a cavitation bubble and shear flow. J. Fluid Mech. 651, 93116.10.1017/S0022112009994058CrossRefGoogle Scholar
Duclaux, V., Caillé, F., Duez, C., Ybert, C., Bocquet, L. & Clanet, C. 2007 Dynamics of transient cavities. J. Fluid Mech. 591, 119.10.1017/S0022112007007343CrossRefGoogle Scholar
Dular, M., Bachert, B., Stoffel, B. & Širok, B. 2004 Relationship between cavitation structures and cavitation damage. Wear 257 (11), 11761184.10.1016/j.wear.2004.08.004CrossRefGoogle Scholar
Dular, M., Delgosha, O.C. & Petkovšek, M. 2013 Observations of cavitation erosion pit formation. Ultrason. Sonochem. 20 (4), 11131120.CrossRefGoogle ScholarPubMed
Dular, M. & Ohl, C.D. 2023 Bulk material influence on the aggressiveness of cavitation–questioning the microjet impact influence and suggesting a possible way to erosion mitigation. Wear 530, 205061.10.1016/j.wear.2023.205061CrossRefGoogle Scholar
Dular, Mž. & Petkovšek, M. 2015 On the mechanisms of cavitation erosion–coupling high speed videos to damage patterns. Expl Therm. Fluid Sci. 68, 359370.10.1016/j.expthermflusci.2015.06.001CrossRefGoogle Scholar
Dular, M. et al. 2019 High speed observation of damage created by a collapse of a single cavitation bubble. Wear 418, 1323.10.1016/j.wear.2018.11.004CrossRefGoogle Scholar
Fan, Y., Bußmann, A., Reuter, F., Bao, H., Adami, S., Gordillo, J.M., Adams, N. & Ohl, C.D. 2024 Amplification of supersonic microjets by resonant inertial cavitation-bubble pair. Phys. Rev. Lett. 132 (10), 104004.10.1103/PhysRevLett.132.104004CrossRefGoogle ScholarPubMed
Ganesh, H., Mäkiharju, S.A. & Ceccio, S.L. 2016 Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. J. Fluid Mech. 802, 3778.10.1017/jfm.2016.425CrossRefGoogle Scholar
Gilmore, F.R. 1952 The growth or collapse of a spherical bubble in a viscous compressible liquid. Tech. Rep. 26-4. California Institute of Technology.Google Scholar
Han, L., Yan, S. & Li, S. 2024 Theoretical investigation of spherical bubble dynamics in high mach number regimes. J. Mar. Sci. Applics. 23 (1), 3948.10.1007/s11804-024-00401-wCrossRefGoogle Scholar
Hsiao, C.-T., Chahine, G.L. & Ma, J. 2020 Dynamics of dispersed bubbly flow over a lifting surface: gas diffusion and bubble breakup effects. Ocean Engng 213, 107630.10.1016/j.oceaneng.2020.107630CrossRefGoogle Scholar
Isselin, J.-C., Alloncle, A.-P. & Autric, M. 1998 On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena. J. Appl. Phys. 84 (10), 57665771.10.1063/1.368841CrossRefGoogle Scholar
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.10.1017/S0022112009006351CrossRefGoogle ScholarPubMed
Keller, J.B. & Kolodner, I.I. 1956 Damping of underwater explosion bubble oscillations. J. Appl. Phys. 27 (10), 11521161.10.1063/1.1722221CrossRefGoogle Scholar
Keller, J.B. & Miksis, M. 1980 Bubble oscillations of large amplitude. J. Acoust. Am. Soc. 68 (2), 628633.10.1121/1.384720CrossRefGoogle Scholar
Koch, M., Lechner, C., Reuter, F., Köhler, K., Mettin, R. & Lauterborn, W. 2016 Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using openfoam. Comput. Fluids 126, 7190.10.1016/j.compfluid.2015.11.008CrossRefGoogle Scholar
Koch, M., Rosselló, J.M., Lechner, C., Lauterborn, W., Eisener, J. & Mettin, R. 2021 Theory-assisted optical ray tracing to extract cavitation-bubble shapes from experiment. Exp. Fluids 62 (3), 119.10.1007/s00348-020-03075-6CrossRefGoogle Scholar
Kornfeld, M. & Suvorov, L. 1944 On the destructive action of cavitation. J. Appl. Phys. 15 (6), 495506.10.1063/1.1707461CrossRefGoogle Scholar
Kühlmann, J. & Kaiser, S.A. 2024 Single-bubble cavitation-induced pitting on technical alloys. Tribol. Lett. 72 (2), 55.10.1007/s11249-024-01851-7CrossRefGoogle Scholar
Kühlmann, J., Lopez de Arcaute y Lozano, C., Hanke, S. & Kaiser, S.A. 2023 Correlation of laser-induced single bubbles with cavitation damage via in-situ imaging. Wear 522, 204723.10.1016/j.wear.2023.204723CrossRefGoogle Scholar
Lauterborn, W. 1982 Cavitation bubble dynamics—new tools for an intricate problem. In Mechanics and Physics of Bubbles in Liquids, pp. 165178. Springer.10.1007/978-94-009-7532-3_14CrossRefGoogle Scholar
Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72 (2), 391399.10.1017/S0022112075003448CrossRefGoogle Scholar
Lechner, C., Lauterborn, W., Koch, M. & Mettin, R. 2019 Fast, thin jets from bubbles expanding and collapsing in extreme vicinity to a solid boundary: a numerical study. Phys. Rev. Fluids 4 (2), 021601.10.1103/PhysRevFluids.4.021601CrossRefGoogle Scholar
Lechner, C., Lauterborn, W., Koch, M. & Mettin, R. 2020 Jet formation from bubbles near a solid boundary in a compressible liquid: numerical study of distance dependence. Phys. Rev. Fluids 5 (9), 093604.10.1103/PhysRevFluids.5.093604CrossRefGoogle Scholar
Li, S., Han, R., Zhang, A.M. & Wang, Q.X. 2016 Analysis of pressure field generated by a collapsing bubble. Ocean Engng 117, 2238.10.1016/j.oceaneng.2016.03.016CrossRefGoogle Scholar
Li, S., Prosperetti, A. & van der Meer, D. 2020 Dynamics of a toroidal bubble on a cylinder surface with an application to geophysical exploration. Intl J. Multiphase Flow 129, 103335.10.1016/j.ijmultiphaseflow.2020.103335CrossRefGoogle Scholar
Li, S., Saade, Y., van der Meer, D. & Lohse, D. 2021 Comparison of boundary integral and volume-of-fluid methods for compressible bubble dynamics. Intl J. Multiphase Flow 145, 103834.10.1016/j.ijmultiphaseflow.2021.103834CrossRefGoogle Scholar
Li, S., Zhao, Z., Zhang, A.-M. & Han, R. 2024 Cavitation bubble dynamics inside a droplet suspended in a different host fluid. J. Fluid Mech. 979, A47.CrossRefGoogle Scholar
Liang, X.-X., Linz, N., Freidank, S., Paltauf, G. & Vogel, A. 2022 Comprehensive analysis of spherical bubble oscillations and shock wave emission in laser-induced cavitation. J. Fluid Mech. 940, A5.10.1017/jfm.2022.202CrossRefGoogle Scholar
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.10.1017/S0022112002003695CrossRefGoogle Scholar
Liu, J., Xiao, W. & Yao, X. 2024 Pressure characteristics of a nonspherical underwater explosion bubble in a compressible fluid. Phys. Fluids 36 (5), 057145.10.1063/5.0206482CrossRefGoogle Scholar
Lozano, C.L.y, Kühlmann, J., Kaiser, S.A. & Hanke, S. 2023 Observing early cavitation damage evolution from repeated laser-induced single bubbles on aluminium, austenitic steel and nickel-aluminium bronze. Wear 523, 204862.10.1016/j.wear.2023.204862CrossRefGoogle Scholar
Mihatsch, M.S., Schmidt, S.J. & Adams, N.A. 2015 Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra. Phys. Fluids 27 (10), 103302.10.1063/1.4932175CrossRefGoogle Scholar
Naude, C.F. & Ellis, A.T. 1961 On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary. ASME. J. Basic Engng 83 (4), 648656.10.1115/1.3662286CrossRefGoogle Scholar
Ohl, C.-D., Arora, M., Dijkink, R., Janve, V. & Lohse, D. 2006 Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett. 89 (7), 074102.10.1063/1.2337506CrossRefGoogle Scholar
Ohl, S.-W., Reese, H. & Ohl, C.-D. 2024 Cavitation bubble collapse near a rigid wall with an oil layer. Intl J. Multiphase Flow 174, 104761.10.1016/j.ijmultiphaseflow.2024.104761CrossRefGoogle Scholar
Orthaber, , Zevnik, J., Petkovšek, R. & Dular, M. 2020 Cavitation bubble collapse in a vicinity of a liquid-liquid interface – Basic research into emulsification process. Ultrason. Sonochem. 68, 105224.10.1016/j.ultsonch.2020.105224CrossRefGoogle Scholar
Park, S.-H., Phan, T.-H. & Park, W.-G. 2022 Numerical investigation of laser-induced cavitation bubble dynamics near a rigid surface based on three-dimensional fully compressible model. Intl J. Heat Mass Transfer 191, 122853.10.1016/j.ijheatmasstransfer.2022.122853CrossRefGoogle Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.10.1017/S0022112098008738CrossRefGoogle Scholar
Plesset, M.S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25 (1), 9698.10.1063/1.1721529CrossRefGoogle Scholar
Prosperetti, A. & Lezzi, A. 1986 Bubble dynamics in a compressible liquid. Part 1. First-order theory. J. Fluid Mech. 168, 457478.10.1017/S0022112086000460CrossRefGoogle Scholar
Raman, K.A., Rosselló, J.M., Reese, H. & Ohl, C.-D. 2022 Microemulsification from single laser-induced cavitation bubbles. J. Fluid Mech. 953, A27.10.1017/jfm.2022.971CrossRefGoogle Scholar
Rayleigh, L. 1917 VIII. On the pressure developed in a liquid during the collapse of a spherical cavity . Lond. Edinb. Dublin Phil. Mag. J. Sci. 34 (200), 9498.10.1080/14786440808635681CrossRefGoogle Scholar
Reese, H., Schädel, R., Reuter, F. & Ohl, C.-D. 2022 Microscopic pumping of viscous liquids with single cavitation bubbles. J. Fluid Mech. 944, A17.10.1017/jfm.2022.480CrossRefGoogle Scholar
Reuter, F., Deiter, C. & Ohl, C.-D. 2022 a Cavitation erosion by shockwave self-focusing of a single bubble. Ultrason. Sonochem. 90, 106131.10.1016/j.ultsonch.2022.106131CrossRefGoogle ScholarPubMed
Reuter, F., Gonzalez-Avila, S.R., Mettin, R. & Ohl, C.-D. 2017 Flow fields and vortex dynamics of bubbles collapsing near a solid boundary. Phys. Rev. Fluids 2 (6), 064202.10.1103/PhysRevFluids.2.064202CrossRefGoogle Scholar
Reuter, F. & Kaiser, S.A. 2019 High-speed film-thickness measurements between a collapsing cavitation bubble and a solid surface with total internal reflection shadowmetry. Phys. Fluids 31 (9), 097108.10.1063/1.5095148CrossRefGoogle Scholar
Reuter, F. & Ohl, C.-D. 2021 Supersonic needle-jet generation with single cavitation bubbles. Appl. Phys. Lett. 118 (13), 134103.10.1063/5.0045705CrossRefGoogle Scholar
Reuter, F., Zeng, Q. & Ohl, C.D. 2022 b The Rayleigh prolongation factor at small bubble to wall stand-off distances. J. Fluid Mech. 944, A11.10.1017/jfm.2022.475CrossRefGoogle Scholar
Rodriguez, M. Jr, Beig, S.A., Barbier, C.N., Johnsen, E. 2022 Dynamics of an inertially collapsing gas bubble between two parallel, rigid walls. J. Fluid Mech. 946, A43.CrossRefGoogle Scholar
Sagar, H.J. & Moctar, O.E. 2020 Dynamics of a cavitation bubble near a solid surface and the induced damage. J. Fluids Struct. 92, 102799.10.1016/j.jfluidstructs.2019.102799CrossRefGoogle Scholar
Shutler, N.D. & Mesler, R.B. 1965 A photographic study of the dynamics and damage capabilities of bubbles collapsing near solid boundaries. ASME. J. Basic Engng 87 (2), 511517.10.1115/1.3650589CrossRefGoogle Scholar
Sieber, A.B., Preso, D.B. & Farhat, M. 2023 Cavitation bubble dynamics and microjet atomization near tissue-mimicking materials. Phys. Fluids 35 (2), 027101.10.1063/5.0136577CrossRefGoogle Scholar
Silberrad, D. 1912 Propeller erosion. Engineering 33, 3335.Google Scholar
Takata, T., Enoki, M., Chivavibul, P., Matsui, A. & Kobayashi, Y. 2016 Effect of confinement layer on laser ablation and cavitation bubble during laser shock peening. Mater. Trans. 57 (10), 17761783.10.2320/matertrans.M2016150CrossRefGoogle Scholar
Tomita, Y., Robinson, P.B., Tong, R.P. & Blake, J.R. 2002 Growth and collapse of cavitation bubbles near a curved rigid boundary. J. Fluid Mech. 466, 259283.10.1017/S0022112002001209CrossRefGoogle Scholar
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.10.1017/S0022112086000745CrossRefGoogle Scholar
Tong, R.P., Schiffers, W.P., Shaw, S.J., Blake, J.R. & Emmony, D.C. 1999 The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339361.10.1017/S0022112098003589CrossRefGoogle Scholar
Tong, S.-Y., Zhang, S., Wang, S.-P. & Li, S. 2022 Characteristics of the bubble-induced pressure, force, and impulse on a rigid wall. Ocean Engng 255, 111484.10.1016/j.oceaneng.2022.111484CrossRefGoogle Scholar
Trummler, T., Bryngelson, S.H., Schmidmayer, K., Schmidt, S.J., Colonius, T. & Adams, N.A. 2020 Near-surface dynamics of a gas bubble collapsing above a crevice. J. Fluid Mech. 899, A16.10.1017/jfm.2020.432CrossRefGoogle Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.10.1017/S0022112089002314CrossRefGoogle Scholar
Wang, Q. 2016 Local energy of a bubble system and its loss due to acoustic radiation. J. Fluid Mech. 797, 201230.10.1017/jfm.2016.281CrossRefGoogle Scholar
Wang, Q.X., Yeo, K.S., Khoo, B.C. & Lam, K.Y. 1996 Strong interaction between a buoyancy bubble and a free surface. Theor. Comput. Fluid Dyn. 8 (1), 7388.10.1007/BF00312403CrossRefGoogle Scholar
Wang, Z., Cheng, H., Bensow, R.E., Peng, X. & Ji, B. 2023 Numerical assessment of cavitation erosion risk on the Delft twisted hydrofoil using a hybrid Eulerian–Lagrangian strategy. Intl J. Mech. Sci. 259, 108618.10.1016/j.ijmecsci.2023.108618CrossRefGoogle Scholar
Wen, H.-G., Yao, Z.-F., Wu, Q., Sun, Y.-R., Yang, C.-X. & Zhong, Q. 2023 Investigation of cavitation erosion caused by laser-induced single bubble collapse near alloy coating surface. J. Hydrodyn. 35, 876886.10.1007/s42241-023-0062-7CrossRefGoogle Scholar
White, W., Beig, S.A. & Johnsen, E. 2023 Pressure fields produced by single-bubble collapse near a corner. Phys. Rev. Fluids 8 (2), 023601.10.1103/PhysRevFluids.8.023601CrossRefGoogle Scholar
Yang, Y., Xiong, C., Wang, S. & Zhang, A. 2025 Cavitation erosion risk on a hydrofoil using a multi-scale method. Phys. Fluids 37 (2), 027107.10.1063/5.0242145CrossRefGoogle Scholar
Yang, Y.X., Wang, Q.X. & Keat, T.S. 2013 Dynamic features of a laser-induced cavitation bubble near a solid boundary. Ultrason. Sonochem. 20 (4), 10981103.10.1016/j.ultsonch.2013.01.010CrossRefGoogle Scholar
Yin, J., Zhang, Y., Zhu, J., Lv, L. & Tian, L. 2021 An experimental and numerical study on the dynamical behaviors of the rebound cavitation bubble near the solid wall. Intl J. Heat Mass Transfer 177, 121525.10.1016/j.ijheatmasstransfer.2021.121525CrossRefGoogle Scholar
YuAlfred, C.H. et al. 2022 Ultrasound-mediated drug delivery: sonoporation mechanisms, biophysics, and critical factors. BME Frontiers 2022, 9807347.Google Scholar
Zeng, Q., An, H. & Ohl, C.-D. 2022 Wall shear stress from jetting cavitation bubbles: influence of the stand-off distance and liquid viscosity. J. Fluid Mech. 932, A14.10.1017/jfm.2021.997CrossRefGoogle Scholar
Zeng, Q., Gonzalez-Avila, S.R., Dijkink, R., Koukouvinis, P., Gavaises, M. & Ohl, C.-D. 2018 Wall shear stress from jetting cavitation bubbles. J. Fluid Mech. 846, 341355.10.1017/jfm.2018.286CrossRefGoogle Scholar
Zhang, A.-M., Li, S. & Cui, J. 2015 Study on splitting of a toroidal bubble near a rigid boundary. Phys. Fluids 27 (6), 062102.10.1063/1.4922293CrossRefGoogle Scholar
Zhang, A.-M., Li, S.-M., Cui, P., Li, S. & Liu, Y.-L. 2023 A unified theory for bubble dynamics. Phys. Fluids 35 (3), 033323.10.1063/5.0145415CrossRefGoogle Scholar
Zhang, A.-M., Li, S.-M., Xu, R.-Z., Pei, S.-C., Li, S. & Liu, Y.-L. 2024 A theoretical model for compressible bubble dynamics considering phase transition and migration. J. Fluid Mech. 999, A58.10.1017/jfm.2024.954CrossRefGoogle Scholar
Zhang, J. 2021 Effect of stand-off distance on ‘counterjet’ and high impact pressure by a numerical study of laser-induced cavitation bubble near a wall. Intl J. Multiphase Flow 142, 103706.10.1016/j.ijmultiphaseflow.2021.103706CrossRefGoogle Scholar
Zhang, S., Wang, S.P. & Zhang, A.M. 2016 Experimental study on the interaction between bubble and free surface using a high-voltage spark generator. Phys. Fluids 28 (3), 032109.10.1063/1.4944349CrossRefGoogle Scholar
Zhang, T., Zhang, A.-M., Zhang, S., Long, S., Han, R., Liu, L., Ohl, C.-D. & Li, S. 2025 Free-surface jetting driven by a cavitating vortex ring. J. Fluid Mech. 1003, A4.10.1017/jfm.2024.1209CrossRefGoogle Scholar
Zhou, G. & Prosperetti, A. 2020 Modelling the thermal behaviour of gas bubbles. J. Fluid Mech. 901, R3.10.1017/jfm.2020.645CrossRefGoogle Scholar
Supplementary material: File

Zhao et al. supplementary movie 1

Mechanism of asymmetric toroidal bubble collapse leading to shockwave focusing and localized severe erosion
Download Zhao et al. supplementary movie 1(File)
File 5.5 MB
Supplementary material: File

Zhao et al. supplementary movie 2

Influence of initial bubble shape on collapse modes and wall pressure
Download Zhao et al. supplementary movie 2(File)
File 2.4 MB