Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T02:07:46.819Z Has data issue: false hasContentIssue false

Numerical study of the effect of blockage ratio in forced convection confined flows of shear-thinning fluids

Published online by Cambridge University Press:  27 October 2021

O. Ruz
Affiliation:
Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Av. Libertador Bernando O'Higgins 3363, Santiago, Chile
E. Castillo*
Affiliation:
Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Av. Libertador Bernando O'Higgins 3363, Santiago, Chile
M. Cruchaga
Affiliation:
Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Av. Libertador Bernando O'Higgins 3363, Santiago, Chile
*
Email address for correspondence: ernesto.castillode@usach.cl

Abstract

In this work, the fluid dynamics and heat transfer of time-dependent flows with shear-thinning behaviour over two confined square cylinders in tandem arrangement are studied numerically. The case studies include two- and three-dimensional flows under a wide range of power-law indices, $0.25\leq n \leq 1.0$, and blockage ratios, $\beta =0.50$, 0.66 and 0.80, for a fixed Reynolds number of $Re=100$ and Prandtl number of $Pr=10$. The fluid dynamic analysis includes detailed qualitative and quantitative comparisons between the different fluids and blockage ratios, where streamlines, viscosity fields, and lift and drag coefficients are presented. Moreover, a detailed study of the route from laminar time-dependent to chaotic flows is included. It was determined that the flow exhibits a transition from laminar to chaotic by decreasing the power-law index ($n$) and increasing the blockage ratio ($\beta$). With respect to the thermal analysis, isotherms and Nusselt numbers are compared between the different case studies. This analysis demonstrates that the average Nusselt numbers increased in chaotic flows. The three-dimensional cases confirmed the results proposed for the two-dimensional case.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abugattas, C., Aguirre, A., Castillo, E. & Cruchaga, M. 2020 Numerical study of bifurcation blood flows using three different non-newtonian constitutive models. Appl. Math. Model. 88, 529549.CrossRefGoogle Scholar
Akbari, O.A., Toghraie, D., Karimipour, A., Marzban, A. & Ahmadi, G.R. 2017 The effect of velocity and dimension of solid nanoparticles on heat transfer in non-newtonian nanofluid. Physica E 86, 6875.CrossRefGoogle Scholar
Alfieri, F., Tiwari, M.K., Renfer, A., Brunschwiler, T., Michel, B. & Poulikakos, D. 2013 Computational modeling of vortex shedding in water cooling of 3D integrated electronics. Intl J. Heat Fluid Flow 44, 745755.CrossRefGoogle Scholar
Anagnostopoulos, P., Iliadis, G. & Richardson, S. 1996 Numerical study of the blockage effects on viscous flow past a circular cylinder. Intl J. Numer. Meth. Fluids 22 (11), 10611074.3.0.CO;2-Q>CrossRefGoogle Scholar
Barkley, D. & Henderson, R.D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.CrossRefGoogle Scholar
Berge, P., Pomeau, Y. & Vidal, C. 1984 Order within Chaos. J. Wiley & Sons.Google Scholar
Bharti, R.P., Chhabra, R.P. & Eswaran, V. 2007 a Two-dimensional steady Poiseuille flow of power-law fluids across a circular cylinder in a plane confined channel: wall effects and drag coefficients. Ind. Engng Chem. Res. 46 (11), 38203840.CrossRefGoogle Scholar
Bharti, R.P., Chhabra, R.P. & Eswaran, V. 2007 b Effect of blockage on heat transfer from a cylinder to power law liquids. Chem. Engng Sci. 62 (17), 47294741.CrossRefGoogle Scholar
Bouaziz, M., Kessentini, S. & Turki, S. 2010 Numerical prediction of flow and heat transfer of power-law fluids in a plane channel with a built-in heated square cylinder. Intl J. Heat Mass Transfer 53 (23–24), 54205429.CrossRefGoogle Scholar
Carmo, B.S., Meneghini, J.R. & Sherwin, S.J. 2010 Possible states in the flow around two circular cylinders in tandem with separations in the vicinity of the drag inversion spacing. Phys. Fluids 22 (5), 054101.CrossRefGoogle Scholar
Castillo, E. & Codina, R. 2019 Dynamic term-by-term stabilized finite element formulation using orthogonal subgrid-scales for the incompressible Navier–Stokes problem. Comput. Meth. Appl. Mech. Engng 349, 701721.CrossRefGoogle Scholar
Choi, C.B., Jang, Y.J. & Yang, K.S. 2012 Secondary instability in the near-wake past two tandem square cylinders. Phys. Fluids 24 (2), 024102.CrossRefGoogle Scholar
Dhiman, A.K., Chhabra, R.P. & Eswaran, V. 2008 Steady flow across a confined square cylinder: effects of power-law index and blockage ratio. J. Non-Newtonian Fluid Mech. 148 (1–3), 141150.CrossRefGoogle Scholar
Fraser, A.M. & Swinney, H.L. 1986 Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 11341140.CrossRefGoogle ScholarPubMed
González, A., Castillo, E. & Cruchaga, M.A. 2020 Numerical verification of a non-residual orthogonal term-by-term stabilized finite element formulation for incompressible convective flow problems. Comput. Maths Appl. 80 (5), 10091028.CrossRefGoogle Scholar
Hron, J., Málek, J. & Turek, S. 2000 A numerical investigation of flows of shear-thinning fluids with applications to blood rheology. Intl J. Numer. Meth. Fluids 32 (7), 863879.3.0.CO;2-P>CrossRefGoogle Scholar
Igarashi, T. 2011 Characteristics of the flow around two circular cylinders arranged in tandem : 1st report. Bull. JSME 24 (188), 323331.CrossRefGoogle Scholar
Jang, J.-Y. & Chen, L.-K. 1997 Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger. Intl J. Heat Mass Transfer 40 (16), 39813990.CrossRefGoogle Scholar
Kennel, M.B., Brown, R. & Abarbanel, H.D.I. 1992 Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 34033411.CrossRefGoogle ScholarPubMed
Lashgari, I., Pralits, J.O., Giannetti, F. & Brandt, L. 2012 First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder. J. Fluid Mech. 701, 201227.CrossRefGoogle Scholar
Loganathan, P. & Ganesan, P. 2006 Numerical study of double-diffusive, free convective flow past a moving vertical cylinder. J. Engng Phys. Thermophys. 79 (1), 7378.CrossRefGoogle Scholar
Mahír, N. & Altaç, Z. 2008 Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements. Intl J. Heat Fluid Flow 29 (5), 13091318.CrossRefGoogle Scholar
Manneville, P. 2010 Instabilities, Chaos and Turbulence, vol. 1. World Scientific.CrossRefGoogle Scholar
Metzner, A.B. 1985 Rheology of suspensions in polymeric liquids. J. Rheol. 29 (6), 739775.CrossRefGoogle Scholar
Mittal, S., Kottaram, J.J. & Kumar, B. 2008 Onset of shear layer instability in flow past a cylinder. Phys. Fluids 20 (5), 054102.CrossRefGoogle Scholar
Mizushima, J. & Suehiro, N. 2005 Instability and transition of flow past two tandem circular cylinders. Phys. Fluids 17 (10), 104107.CrossRefGoogle Scholar
Nejat, A., Abdollahi, V. & Vahidkhah, K. 2011 Lattice Boltzmann simulation of non-Newtonian flows past confined cylinders. J. Non-Newtonian Fluid Mech. 166 (12–13), 689697.CrossRefGoogle Scholar
Nikfarjam, F. & Sohankar, A. 2013 Power-law fluids flow and heat transfer over two tandem square cylinder: effects of Reynolds number and power-law index. Acta Mech. 224 (5), 11151132.CrossRefGoogle Scholar
Noakes, L. 1991 The takens embedding theorem. Intl J. Bifurcation Chaos 1 (04), 867872.CrossRefGoogle Scholar
Ooi, A., Chan, L., Aljubaili, D., Mamon, C., Leontini, J.S., Skvortsov, A., Mathupriya, P. & Hasini, H. 2020 Some new characteristics of the confined flow over circular cylinders at low Reynolds numbers. Intl J. Heat Fluid Flow 86, 108741.CrossRefGoogle Scholar
Parvin, S., Alim, M.A. & Hossain, N.F. 2012 Prandtl number effect on cooling performance of a heated cylinder in an enclosure filled with nanofluid. Intl Commun. Heat Mass Transfer 39 (8), 12201225.CrossRefGoogle Scholar
Patil, P.P. & Tiwari, S. 2008 Effect of blockage ratio on wake transition for flow past square cylinder. Fluid Dyn. Res. 40 (11–12), 753778.CrossRefGoogle Scholar
Pralits, J.O., Giannetti, F. & Brandt, L. 2013 Three-dimensional instability of the flow around a rotating circular cylinder. J. Fluid Mech. 730, 518.CrossRefGoogle Scholar
Rao, M.K., Sahu, A.K. & Chhabra, R.P. 2011 Effect of confinement on power-law fluid flow past a circular cylinder. Polym. Engng Sci. 51 (10), 20442065.CrossRefGoogle Scholar
Ruz, O., Castillo, E., Cruchaga, M. & Aguirre, A. 2021 Numerical study of the effect of blockage ratio on the flow past one and two cylinders in tandem for different power-law fluids. Appl. Math. Model. 89, 16401662.CrossRefGoogle Scholar
Saha, A., Muralidhar, K. & Biswas, G. 2000 Transition and chaos in two-dimensional flow past a square cylinder. J. Engng Mech. ASCE 126 (5), 523.CrossRefGoogle Scholar
Sahin, M. & Owens, R.G. 2004 A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder. Phys. Fluids 16 (5), 13051320.CrossRefGoogle Scholar
Sahu, A.K., Chhabra, R.P. & Eswaran, V. 2009 Forced convection heat transfer from a heated square cylinder to power law fluids in the unsteady flow regime. Numer. Heat Transfer A 56 (2), 109131.Google Scholar
Sahu, A.K., Chhabra, R.P. & Eswaran, V. 2010 Two-dimensional laminar flow of a power-law fluid across a confined square cylinder. J. Non-Newtonian Fluid Mech. 165 (13–14), 752763.CrossRefGoogle Scholar
Sajadifar, S.A., Karimipour, A. & Toghraie, D. 2017 Fluid flow and heat transfer of non-newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur. J. Mech. B/Fluids 61, 2532.CrossRefGoogle Scholar
Sen, S., Mittal, S. & Biswas, G. 2011 Flow past a square cylinder at low Reynolds numbers. Intl J. Numer. Meth. Fluids 67 (9), 11601174.CrossRefGoogle Scholar
Sharma, N., Dhiman, A. & Kumar, S. 2013 Non-Newtonian power-law fluid flow around a heated square bluff body in a vertical channel under aiding buoyancy. Numer. Heat Transfer A 64 (10), 777799.CrossRefGoogle Scholar
Strogatz, S.H. 2018 Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press.CrossRefGoogle Scholar
Tabilo-Munizaga, G. & Barbosa-Cánovas, G.V. 2005 Rheology for the food industry. J. Food Engng 67 (1), 147156, iV Iberoamerican Congress of Food Engineering (CIBIA IV).CrossRefGoogle Scholar
Takens, F. 1981 Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980 (ed. D. Rand & L.-S. Young), pp. 366–381. Springer.CrossRefGoogle Scholar
Wolf, A., Swift, J.B., Swinney, H.L. & Vastano, J.A. 1985 Determining Lyapunov exponents from a time series. Physica D 16 (3), 285317.CrossRefGoogle Scholar
Yen, S.C., San, K.C. & Chuang, T.H. 2008 Interactions of tandem square cylinders at low Reynolds numbers. Expl Therm. Fluid Sci. 32 (4), 927938.CrossRefGoogle Scholar
Zdravkovich, M.M. 1987 The effects of interference between circular cylinders in cross-flow. J. Fluids Struct. 1 (2), 239261.CrossRefGoogle Scholar