Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T01:51:48.218Z Has data issue: false hasContentIssue false

Numerical study on the interaction between a shock wave and porous foam and the mitigation mechanism of porous foam filling a straight tube on a blast wave

Published online by Cambridge University Press:  17 March 2022

Yuta Sugiyama*
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
Tomotaka Homae
Affiliation:
National Institute of Technology, Toyama College, 1-2 Ebie-neriya, Imizu, Toyama 933-0293, Japan
Tomoharu Matsumura
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
Kunihiko Wakabayashi
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
*
Email address for correspondence: yuta.sugiyama@aist.go.jp

Abstract

This study validated a two-phase compressible flow model considering elasto-plastic porous foams. The numerical data were compared with the previous experimental results in terms of the interaction between the planar shock wave and the porous foams and the mitigation effect of a porous foam filling a straight tube on a blast wave. The porous foams in the shock tube interacted with a planar shock wave. The drag between the shocked air and the foams reduced the shock wave strength. Moreover, the flexible foam was significantly deformed by the shock wave. The validation results confirmed good agreement and consistency between the numerical and experimental data. The mitigation effect on the blast wave caused by a high explosive, where the main parameter for comparison was the location of a rigid porous foam layer inside the straight tube, was investigated. In the first case, the porous foam plate was placed on the floor, whereas in the second case, the porous foam plates were placed on the floor, sidewalls and ceiling. The total energy transferred between the porous foam and the shocked air was computed to quantitatively understand the mitigation mechanism of the porous foam on the blast wave. The heat transfer was a dominant factor for the energy transfer from the shocked air to the porous foams. The second case further mitigated the blast wave outside, and the increment of the interface area of the air/porous foam greatly affected the blast wave mitigation.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baer, M.R. 1992 A numerical study of shock wave reflections on low density foam. Shock Waves 2, 121124.10.1007/BF01415901CrossRefGoogle Scholar
Baer, M.R. & Nunziato, J.W. 1986 A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Intl J. Multiphase Flow 12, 861889.10.1016/0301-9322(86)90033-9CrossRefGoogle Scholar
Bear, J., Sorek, S., Ben-Dor, G. & Mazor, G. 1992 Displacement waves in saturated thermoelastic porous media. I. Basic equations. Fluid Dyn. Res. 9, 155164.CrossRefGoogle Scholar
Ben-Dor, G., Mazor, G., Igra, O., Sorek, S. & Onodera, H. 1994 Shock wave interaction with cellular materials part II: open cell foams; experimental and numerical results. Shock Waves 3, 167179.CrossRefGoogle Scholar
Cheng, M., Hung, K.C. & Chong, O.Y. 2005 Numerical study of water mitigation effects on blast wave. Shock Waves 14, 217223.10.1007/s00193-005-0267-4CrossRefGoogle Scholar
Cheng, J.-B., Liu, L., Jiang, S., Yu, M. & Liu, Z. 2020 A second-order cell-centered Lagrangian scheme with a HLLC Riemann Solver of elastic and plastic waves for two-dimensional elastic-plastic flows. J. Comput. Phys. 413, 109452.CrossRefGoogle Scholar
Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M. & Tsuji, Y. 2011 Multiphase Flows with Droplets and Particles, 2nd edn. CRC Press.10.1201/b11103CrossRefGoogle Scholar
Das, S., Sneijders, S., Deen, N.G. & Kuipers, J.A.M. 2018 Drag and heat transfer closures for realistic numerically generated random open-cell solid foams using an immersed boundary method. Chem. Engng Sci. 183, 260274.10.1016/j.ces.2018.03.022CrossRefGoogle Scholar
Di Felice, R. 1994 The voidage function for fluid-particle interaction systems. Intl J. Multiphase Flow 20, 153159.CrossRefGoogle Scholar
Ergun, S. 1952 Fluid flow through packed columns. Chem. Engng Prog. 48, 8994.Google Scholar
Furfaro, D. & Saurel, R. 2015 A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows. Comput. Fluids 111, 159178.10.1016/j.compfluid.2015.01.016CrossRefGoogle Scholar
Gibson, L.J. & Ashby, M.F. 1997 Cellular Solids: Structures and Properties, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Goroshin, S., Frost, D.L., Ripley, R. & Zhang, F. 2016 Measurement of particle density during explosive particle dispersal. Prop. Explos. Pyrotech. 41, 245253.10.1002/prep.201500262CrossRefGoogle Scholar
Gunn, D.J. 1978 Transfer of heat or mass to particles in fixed and fluidised beds. Intl J. Heat Mass Transfer 21, 467476.10.1016/0017-9310(78)90080-7CrossRefGoogle Scholar
Gvozdeva, L.G., Faresov, Y.M. & Fokeev, V.P. 1985 Interaction of air shock waves with porous compressible materials. J. Appl. Mech. Tech. Phys. 26, 401405.CrossRefGoogle Scholar
Homae, T., Shimura, K., Sugiyama, Y., Wakabayashi, K., Matsumura, T. & Nakayama, Y. 2020 Blast wave mitigation from a straight tube using glass beads. Sci. Technol. Energ. Mater. 81, 164170.Google Scholar
Homae, T., Sugiyama, Y., Matsumura, T. & Wakabayashi, K. 2021 Blast wave mitigation from a straight tube using metal foam floor plate. Sci. Technol. Energ. Mater. 82, 8387.Google Scholar
Homae, T., Sugiyama, Y., Wakabayashi, K., Matsumura, T. & Nakayama, Y. 2016 Water and sand for blast pressure mitigation around a subsurface magazine. Sci. Technol. Energ. Mater. 77, 1821.Google Scholar
Homae, T., Sugiyama, Y., Wakabayashi, K., Matsumura, T. & Nakayama, Y. 2018 Blast wave mitigation from the straight tube by using water: part I small scale experiment. Mater. Sci. Forum 910, 149154.10.4028/www.scientific.net/MSF.910.149CrossRefGoogle Scholar
Homae, T., Wakabayashi, K., Matsumura, T. & Nakayama, Y. 2006 Attenuation of blast wave using water gel. Sci. Technol. Energ. Mater. 67, 182186.Google Scholar
Homae, T., Wakabayashi, K., Matsumura, T. & Nakayama, Y. 2007 Attenuation of blast wave using sand around a spherical pentolite. Sci. Technol. Energ. Mater. 68, 9093.Google Scholar
Innocentini, M.D.M., Salvini, V.R., Macedo, A. & Pandolfelli, V.C. 1999 Prediction of ceramic foams permeability using Ergun's equation. Mater. Res. 2, 283289.10.1590/S1516-14391999000400008CrossRefGoogle Scholar
Kazemi-Kamyab, V., Subramaniam, K. & Andreopoulos, Y. 2011 Stress transmission in porous materials impacted by shock waves. J. Appl. Phys. 109, 013523.10.1063/1.3517791CrossRefGoogle Scholar
Kennedy, M.W., Zhang, K., Fritzsch, R., Akhtar, S., Bakken, J.A. & Aune, R.E. 2013 Characterization of ceramic foam filters used for liquid metal filtration. Metall. Mater. Trans. B 44, 671690.CrossRefGoogle Scholar
Kingery, C.N. 1989 Survey of airblast data related to underground munition storage sites. Tech. Rep. BRL-TR-3012. US Army Ballistic Research Laboratory.Google Scholar
Kingery, C.N. & Gion, E.J. 1990 Tunnel-exit pressure and impulse effects on free-field pressure and impulse. Tech. Rep. BRL-TR-3132. US Army Ballistic Research Laboratory.Google Scholar
Kitagawa, K., Jyonouchi, T. & Yasuhara, M. 2001 Drag difference between steady and shocked gas flows passing through a porous body. Shock Waves 11, 133139.10.1007/PL00004063CrossRefGoogle Scholar
Kitagawa, K., Takayama, K. & Yasuhara, M. 2006 Attenuation of shock waves propagating in polyurethane foams. Shock Waves 15, 437445.10.1007/s00193-006-0042-1CrossRefGoogle Scholar
Lees, F.P. 2012 Lees' Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, 4th edn (ed. S. Mannan). Butterworth-Heinemann.Google Scholar
Levi-Hevroni, D., Levy, A., Ben-Dor, G. & Sorek, S. 2002 Numerical investigation of the propagation of planar shock waves in saturated flexible porous materials: development of the computer code and comparison with experimental results. J. Fluid Mech. 462, 285306.10.1017/S0022112002008583CrossRefGoogle Scholar
Levy, A., Ben-Dor, G., Skews, B.W. & Sorek, S. 1993 Head-on collision of normal shock waves with rigid porous materials. Exp. Fluids 15, 183190.CrossRefGoogle Scholar
Levy, A., Ben-Dor, G. & Sorek, S. 1996 Numerical investigation of the propagation of shock waves in rigid porous materials: development of the computer code and comparison with experimental results. J. Fluid Mech. 324, 163179.10.1017/S0022112096007872CrossRefGoogle Scholar
Levy, A., Ben-Dor, G. & Sorek, S. 1998 Numerical investigation of the propagation of shock waves in rigid porous materials: flow field behavior and parametric study. Shock Waves 8, 127137.10.1007/s001930050106CrossRefGoogle Scholar
Levy, A., Levy-Hevroni, D., Sorek, S. & Ben-Dor, G. 1999 Derivation of Forchheimer terms and their verification by application to waves propagation in porous media. Intl J. Multiphase Flow 25, 683704.10.1016/S0301-9322(98)00031-7CrossRefGoogle Scholar
Liu, L., Cheng, J.-B. & Liu, Z. 2019 A multi-material HLLC Riemann solver with both elastic and plastic waves for 1D elastic-plastic flows. Comput. Fluids 192, 104265.10.1016/j.compfluid.2019.104265CrossRefGoogle Scholar
Marsh, S.P. 1980 LASL Shock Hugoniot Data. University of California Press.Google Scholar
McGrath, T.P., Clair, J.G.S. & Balachandar, S. 2016 A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes. J. Appl. Phys. 119, 174903.CrossRefGoogle Scholar
Meyers, M.A. 1994 Dynamic Behavior of Materials. John Wiley & Sons.10.1002/9780470172278CrossRefGoogle Scholar
Miller, G.H. & Puckett, E.G. 1996 A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134164.10.1006/jcph.1996.0200CrossRefGoogle Scholar
Monti, R. 1970 Normal shock wave reflection on deformable walls. Meccanica 5, 285296.10.1007/BF02145653CrossRefGoogle Scholar
Park, Y.-K. & Fahrenthold, E.P. 2006 Simulation of hypervelocity impact effects on reinforced carbon-carbon. J. Spacecr. Rockets 43, 200206.CrossRefGoogle Scholar
Pontalier, Q., Lhoumeau, M., Milne, A.M., Longbottom, A.W. & Frost, D.L. 2018 b Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials. Shock Waves 28, 513531.10.1007/s00193-018-0820-6CrossRefGoogle Scholar
Pontalier, Q., Loiseau, J., Goroshin, S. & Frost, D.L. 2018 a Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids. Shock Waves 28, 489511.10.1007/s00193-018-0821-5CrossRefGoogle Scholar
Ram, O. & Sadot, O. 2013 A simple constitutive model for predicting the pressure histories developed behind rigid porous media impinged by shock waves. J. Fluid Mech. 718, 507523.10.1017/jfm.2012.627CrossRefGoogle Scholar
Rigby, S.E., Lodge, T.J., Alotaibi, S., Barr, A.D., Clarke, S.D., Langdon, G.S. & Tyas, A. 2020 Preliminary yield estimation of the 2020 Beirut explosion using video footage from social media. Shock Waves 30, 671675.10.1007/s00193-020-00970-zCrossRefGoogle Scholar
Ripperger, S., Gösele, W., Alt, C. & Loewe, T. 2013 Filtration, 1. Fundamentals, Ullmann's Encyclopedia of Industrial Chemistry. Wiley.10.1002/14356007.b02_10.pub3CrossRefGoogle Scholar
Saurel, R. & LeMetayer, O. 2001 A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239271.10.1017/S0022112000003098CrossRefGoogle Scholar
Saurel, R., Martelot, S.L., Tosello, R. & Lapébie, E. 2014 Symmetric model of compressible granular mixtures with permeable interfaces. Phys. Fluids 26, 123304.CrossRefGoogle Scholar
Schoch, S., Nikiforakis, N., Lee, B.J. & Saurel, R. 2013 Multi-phase simulation of ammonium nitrate emulsion detonations. Combust. Flame 160, 18831899.CrossRefGoogle Scholar
Seitz, M.W. & Skews, B.W. 2006 Effect of compressible foam properties on pressure amplification during shock wave impact. Shock Waves 15, 177197.CrossRefGoogle Scholar
Shin, Y.S., Lee, M., Lam, K.Y. & Yeo, K.S. 1998 Modelling mitigation effects of watershield on shock waves. Shock Vib. 5, 225234.CrossRefGoogle Scholar
Shu, C.-W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439471.10.1016/0021-9991(88)90177-5CrossRefGoogle Scholar
Skews, B.W. 1991 The reflected pressure field in the interaction of weak shock waves with a compressible foam. Shock Waves 1, 205211.CrossRefGoogle Scholar
Skews, B.W., Atkins, M.D. & Seitz, M.W. 1993 The impact of a shock wave on porous compressible foams. J. Fluid Mech. 253, 245265.CrossRefGoogle Scholar
Sorek, S., Levy, A., Ben-Dor, G. & Smeulders, D. 1999 Contributions to theoretical/experimental developments in shock waves propagation in porous media. Transp. Porous Med. 34, 63100.CrossRefGoogle Scholar
Sugiyama, Y., Homae, T., Matsumura, T. & Wakabayashi, K. 2020 Numerical study on the attenuation effect on the blast wave of encircling a high explosive with granular media. J. Appl. Phys. 127, 164701.CrossRefGoogle Scholar
Sugiyama, Y., Homae, T., Matsumura, T. & Wakabayashi, K. 2021 Numerical study on the mitigation effect of glass particles filling a partially confined space on a blast wave. Intl J. Multiphase Flow 136, 103546.10.1016/j.ijmultiphaseflow.2020.103546CrossRefGoogle Scholar
Sugiyama, Y., Homae, T., Wakabayashi, K., Matsumura, T. & Nakayama, Y. 2014 Numerical simulations on the attenuation effect of a barrier material on a blast wave. J. Loss Prev. Process. Ind. 32, 135143.CrossRefGoogle Scholar
Sugiyama, Y., Homae, T., Wakabayashi, K., Matsumura, T. & Nakayama, Y. 2018 Numerical study on the mitigation effect of water in the immediate vicinity of a high explosive on the blast wave. Intl J. Multiphase Flow 99, 467473.10.1016/j.ijmultiphaseflow.2017.11.014CrossRefGoogle Scholar
Sugiyama, Y., Tanaka, T., Matsuo, A., Homae, T., Wakabayashi, K., Matsumura, T. & Nakayama, Y. 2016 Numerical simulation of blast wave mitigation achieved by water inside a subsurface magazine model. J. Loss Prev. Process. Ind. 43, 521528.CrossRefGoogle Scholar
Sugiyama, Y., Wakabayashi, K., Matsumura, T. & Nakayama, Y. 2015 Numerical estimation of blast wave strength from an underground structure. Sci. Technol. Energ. Mater. 76, 1419.Google Scholar
Tamba, T., Sugiyama, Y., Ohtani, K. & Wakabayashi, K. 2021 Comparison of blast mitigation performance between water layers and water droplets. Shock Waves 31, 8994.CrossRefGoogle Scholar
Toro, E.F., Spruce, M. & Speares, W. 1994 Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 2534.10.1007/BF01414629CrossRefGoogle Scholar
Torrens, R. & Wrobel, L.C. 2002 Weighted average flux method and flux limiters for the numerical simulation of shock waves in rigid porous media. Intl J. Numer. Meth. Fluids 40, 11871207.10.1002/fld.416CrossRefGoogle Scholar
Torrens, R. & Wrobel, L.C. 2003 On the propagation of a normal shock wave through a layer of incompressible porous material. Intl J. Numer. Meth. Heat Fluid Flow 13, 178198.10.1108/09615530310459333CrossRefGoogle Scholar
Wehinger, G.D., Heitmann, H. & Kraume, M. 2016 An artificial structure modeler for 3D CFD simulations of catalytic foams. Chem. Engng J. 284, 543556.10.1016/j.cej.2015.09.014CrossRefGoogle Scholar
White, F.M. 2006 Viscous Fluid Flow, 3rd edn. McGraw-Hill.Google Scholar
Yasuhara, M., Watanabe, S., Kitagawa, K., Yasue, T. & Mizutani, M. 1996 Experiment of effects of porosity in the interaction of shock wave and foam. JSME Intl J. Ser. B 39, 287293.CrossRefGoogle Scholar
Zhang, F., Frost, D.L., Thibault, P.A. & Murray, S.B. 2001 Explosive dispersal of solid particles. Shock Waves 10, 431443.10.1007/PL00004050CrossRefGoogle Scholar
Zhang, X. & Shu, C.-W. 2011 Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. Lond. A 467, 27522776.Google Scholar