Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T05:15:37.828Z Has data issue: false hasContentIssue false

On a stabilization mechanism for low-velocity detonations

Published online by Cambridge University Press:  08 March 2017

Aliou Sow
Affiliation:
Applied Mathematics and Computational Science, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Roman E. Semenko
Affiliation:
Department of Mechanics and Mathematics, Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia Sobolev Institute of Mathematics, Acad. Koptyug Av., 4, Novosibirsk 630090, Russia
Aslan R. Kasimov*
Affiliation:
Applied Mathematics and Computational Science, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
*
Email address for correspondence: aslankasimov@gmail.com

Abstract

We use numerical simulations of the reactive Euler equations to analyse the nonlinear stability of steady-state one-dimensional solutions for gaseous detonations in the presence of both momentum and heat losses. Our results point to a possible stabilization mechanism for the low-velocity detonations in such systems. The mechanism stems from the existence of a one-parameter family of solutions found in Semenko et al. (Shock Waves, vol. 26 (2), 2016, pp. 141–160).

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babkin, V. S. 2012 Fast gas combustion in systems with hydraulic resistance. Combust. Explos. Shock Waves 48 (3), 278287.Google Scholar
Babkin, V. S., Korzhavin, A. A. & Bunev, V. A. 1991 Propagation of premixed gaseous explosion flames in porous media. Combust. Flame 87 (2), 182190.Google Scholar
Brailovsky, I., Kagan, L. & Sivashinsky, G. 2012 Combustion waves in hydraulically resisted systems. Phil. Trans. R. Soc. A 370 (1960), 625646.CrossRefGoogle ScholarPubMed
Brailovsky, I. & Sivashinsky, G. 2000 Hydraulic resistance and multiplicity of detonation regimes. Combust. Flame 122 (1), 130138.Google Scholar
Brailovsky, I. & Sivashinsky, G. 2002 Effects of momentum and heat losses on the multiplicity of detonation regimes. Combust. Flame 128 (1), 191196.CrossRefGoogle Scholar
Camargo, A., Ng, H. D., Chao, J. & Lee, J. H. S. 2010 Propagation of near-limit gaseous detonations in small diameter tubes. Shock Waves 20 (6), 499508.CrossRefGoogle Scholar
Chan, C. K. & Greig, D. R. 1989 The structures of fast deflagrations and quasi-detonations. In Symposium (International) on Combustion, vol. 22, pp. 17331739. Elsevier.Google Scholar
Ciccarelli, G. & Dorofeev, S. 2008 Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci. 34 (4), 499550.CrossRefGoogle Scholar
Dionne, J. P., Ng, H. D. & Lee, J. H. S. 2000 Transient development of friction-induced low-velocity detonations. Proc. Combust. Inst. 28 (1), 645651.Google Scholar
Gao, Y., Ng, H. D. & Lee, J. H. S. 2017 Near-limit propagation of gaseous detonations in narrow annular channels. Shock Waves 27 (2), 199207.Google Scholar
Gelfand, B. E., Frolov, S. M. & Nettleton, M. A. 1991 Gaseous detonations–a selective review. Progr. Energy Combustion Sci. 17 (4), 327371.Google Scholar
Henrick, A. K., Aslam, T. D. & Powers, J. M. 2006 Simulations of pulsating one-dimensional detonations with true fifth order accuracy. J. Comput. Phys. 213 (1), 311329.CrossRefGoogle Scholar
Higgins, A. J. 2012 Steady one-dimensional detonations. In Shock Waves Science and Technology Library, vol. 6, pp. 33105. Springer.Google Scholar
Ishii, K. & Monwar, M. 2011 Detonation propagation with velocity deficits in narrow channels. Proc. Combust. Inst. 33 (2), 23592366.Google Scholar
Kasimov, A. R. & Semenko, R. 2016 On modeling gaseous detonation in a porous medium by one-dimensional Euler equations. Combust. Explos. 9 (4), 1926.Google Scholar
Korzhavin, A. A., Bunev, V. A., Babkin, V. S., Lawes, M. & Bradley, D. 1999 On one regime of low-velocity detonation in porous media. Gaseous and Heterogeneous Detonations: Science to Applications. pp. 255268. ENAS Publ.Google Scholar
Lee, H. I. & Stewart, D. S. 1990 Calculation of linear detonation instability: one-dimensional instability of plane detonation. J. Fluid Mech. 212, 103132.CrossRefGoogle Scholar
Lee, J. H. S. 2008 The Detonation Phenomenon. Cambridge University Press.Google Scholar
Lee, J. H. S., Knystautas, R. & Chan, C. K. 1985 Turbulent flame propagation in obstacle-filled tubes. In Symposium (International) on Combustion, vol. 20, pp. 16631672. Elsevier.Google Scholar
Lee, J. H. S., Knystautas, R. & Freiman, A. 1984 High speed turbulent deflagrations and transition to detonation in H2 – air mixtures. Combust. Flame 56 (2), 227239.CrossRefGoogle Scholar
Lyamin, G. A., Mitrofanov, V. V., Pinaev, A. V. & Subbotin, V. A. 1991 Propagation of gas explosion in channels with uneven walls and in porous media. In Dynamic Structure of Detonation in Gaseous and Dispersed Media, pp. 5175. Kluwer Academic.CrossRefGoogle Scholar
Lyamin, G. A. & Pinaev, A. V. 1985 Supersonic (detonation) combustion of gases in inert porous media. Sov. Phys. Dokl. 30, 694696.Google Scholar
Makris, A., Shafique, H., Lee, J. H. S. & Knystautas, R. 1995 Influence of mixture sensitivity and pore size on detonation velocities in porous media. Shock Waves 5 (1–2), 8995.CrossRefGoogle Scholar
Manzhalei, V. I. 1992 Detonation regimes of gases in capillaries. Combust. Explos. Shock Waves 28 (3), 296302.Google Scholar
Manzhalei, V. I. 1998 Gas detonation in a flat channel of 50 μm depth. Combust. Explos. Shock Waves 34 (6), 662664.Google Scholar
Manzhalei, V. I. 1999 Low-velocity detonation limits of gaseous mixtures. Combust. Explos. Shock Waves 35 (3), 296302.Google Scholar
Radulescu, M. I. & Lee, J. H. S. 2002 The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame 131 (1–2), 2946.Google Scholar
Schelkin, K. I. 1949 Fast Combustion and Spin Detonation of Gases. Voenizdat.Google Scholar
Semenko, R., Faria, L. M., Kasimov, A. R. & Ermolaev, B. S. 2016 Set-valued solutions for non-ideal detonation. Shock Waves 26 (2), 141160.CrossRefGoogle Scholar
Sow, A., Chinnayya, A. & Hadjadj, A. 2014 Mean structure of one-dimensional unstable detonations with friction. J. Fluid Mech. 743, 503533.Google Scholar
Teodorczyk, A., Lee, J. H. S. & Knystautas, R. 1989 Propagation mechanism of quasi-detonations. In Symposium (International) on Combustion, vol. 22, pp. 17231731. Elsevier.Google Scholar
Teodorczyk, A., Lee, J. H. S. & Knystautas, R. 1991 The structure of fast turbulent flames in very rough, obstacle-filled channels. In Symposium (International) on Combustion, vol. 23, pp. 735741. Elsevier.Google Scholar
Zel’dovich, Y. B. 1940 On the theory of propagation of detonation in gaseous systems. J. Expl Theor. Phys. 10 (5), 542569.Google Scholar
Zel’dovich, Y. B., Gel’fand, B. E., Kazhdan, Y. M. & Frolov, S. M. 1987 Detonation propagation in a rough tube taking account of deceleration and heat transfer. Combust. Explos. Shock Waves 23 (3), 342349.Google Scholar
Zel’dovich, Y. B. & Kompaneets, A. S. 1960 Theory of Detonation. Academic.Google Scholar
Zhang, F. & Lee, J. H. S. 1994 Friction-induced oscillatory behaviour of one-dimensional detonations. Proc. R. Soc. Lond. A 446 (1926), 87105.Google Scholar