Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T03:16:25.223Z Has data issue: false hasContentIssue false

On the characteristics and mechanism of perturbation modes with asymptotic growth in trailing vortices

Published online by Cambridge University Press:  17 May 2021

Siyi Qiu
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai200240, PR China
Zepeng Cheng
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai200240, PR China
Hui Xu
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai200240, PR China
Yang Xiang*
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai200240, PR China J.C.Wu Center for Aerodynamics, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai200240, PR China
Hong Liu
Affiliation:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai200240, PR China J.C.Wu Center for Aerodynamics, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai200240, PR China
*
Email address for correspondence: xiangyang@sjtu.edu.cn

Abstract

Trailing vortices typically persist into the extreme far-wake where the asymptotic perturbation dominates. In this work, we investigate the mechanism underlying the asymptotic growth of perturbation in trailing vortices by looking into the linear instabilities of two canonical trailing vortex systems, namely an isolated vortex and a co-rotating vortex pair with axial flow, generated by an M6 swept wing without/with winglets in a wind tunnel experiment. The dynamics and wandering phenomena of both vortex configurations are characterized by stereoscopic particle image velocimetry (SPIV). Their linear perturbation modes are acquired by local and bi-global linear stability analyses. For the isolated trailing vortex, the dominating perturbation mode is found to be a viscous, unstable Mode-A counter to the vortex rotation ($m>0$), while Mode-A with $m\leqslant 0$ is essentially damped and Mode-P, which is exclusive to $|m|\leqslant 1$, remains marginally stable. For the co-rotating vortex pair, the upper vortex is subject to an unstable, azimuthal perturbation, while the dominating perturbation of the lower vortex is radial. The perturbation mode of the upper vortex is more unstable than that of the lower vortex. The difference is supported by the corresponding wandering amplitude. The dominating modes of the two vortex configurations manifest an identical feature of azimuthal perturbations penetrating the core boundary. The dominating mode overwhelms those centre modes confined within the core. For both vortex configurations, a limiting penetration depth exists, where the perturbation is most amplified asymptotically. The limiting penetration depth is ascribed to the alignment of the critical point with vortex shear. For the isolated vortex, it is the shear layer at the core boundary; for the vortex pair, it is the mutual shear layer of both vortices. The asymptotic growth of perturbations is thus attributed to an interaction between the respective characteristic layers of the perturbation and the flow at the leading order.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antkowiak, A. & Brancher, P. 2004 Transient energy growth for the Lamb—Oseen vortex. Phys. Fluids 16 (1), L1L4.CrossRefGoogle Scholar
Bailey, S.C.C. & Tavoularis, S. 2008 Measurements of the velocity field of a wing-tip vortex, wandering in grid turbulence. J. Fluid Mech. 601 (2008), 281315.CrossRefGoogle Scholar
Baker, G.R., Barker, J., Bofah, K.K. & Saffman, P.G. 1974 Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 65 (2), 325336.CrossRefGoogle Scholar
Batchelor, G.K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20 (4), 645658.CrossRefGoogle Scholar
Bertényi, T. & Graham, W.R. 2007 Experimental observations of the merger of co-rotating wake vortices. J. Fluid Mech. 586, 397422.CrossRefGoogle Scholar
Billant, P. & Gallaire, F. 2005 Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities. J. Fluid Mech. 542, 365379.CrossRefGoogle Scholar
Birch, D.M., Lee, T., Mokhtarian, F. & Kafyeke, F. 2004 Structure and induced drag of a tip vortex. J. Aircraft 41 (5), 11381145.CrossRefGoogle Scholar
Brion, V., Sipp, D. & Jacquin, L. 2007 Optimal amplification of the Crow instability. Phys. Fluids 19 (11), 111703.CrossRefGoogle Scholar
Cheng, Z.P., Qiu, S.Y., Xiang, Y. & Liu, H. 2019 Quantitative features of wingtip vortex wandering based on the linear stability analysis. AIAA J. 57 (7), 26942709.CrossRefGoogle Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37 (1), 357392.CrossRefGoogle Scholar
Crow, S.C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.CrossRefGoogle Scholar
Devenport, W.J., Rife, M.C., Liapis, S.I. & Follin, G.J. 1996 The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67106.CrossRefGoogle Scholar
Edstrand, A.M., Davis, T.B., Schmid, P.J., Taira, K. & Cattafesta, L.N. 2016 On the mechanism of trailing vortex wandering. J. Fluid Mech. 801, R1.CrossRefGoogle Scholar
Edstrand, A.M., Schmid, P.J. & Taira, K. 2018 a A parallel stability analysis of a trailing vortex wake. J. Fluid Mech. 837, 858895.CrossRefGoogle Scholar
Eloy, C., Le Gal, P. & Le Dizès, S. 2000 Experimental study of the multipolar vortex instability. Phys. Rev. Lett. 85 (16), 34003403.CrossRefGoogle ScholarPubMed
Eloy, C. & Le Dizès, S. 1999 Three-dimensional instability of Burgers and Lamb—Oseen vortices in a strain field. J. Fluid Mech. 378, 145166.CrossRefGoogle Scholar
Emanuel, K. 1984 A note on the stability of columnar vortices. J. Fluid Mech. 145, 235238.CrossRefGoogle Scholar
Fabre, D. & Jacquin, L. 2004 Viscous instabilities in trailing vortices at large swirl numbers. J. Fluid Mech. 500, 239262.CrossRefGoogle Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb—Oseen vortex. J. Fluid Mech. 551, 235274.CrossRefGoogle Scholar
Gerz, T., Holzäpfel, F. & Darracq, D. 2002 Commercial aircraft wake vortices. Prog. Aerosp. Sci. 38 (3), 181208.CrossRefGoogle Scholar
Hattori, Y., Blanco-Rodríguez, F.J. & Le Dizès, S. 2019 Numerical stability analysis of a vortex ring with swirl. J. Fluid Mech. 878, 536.CrossRefGoogle Scholar
He, W., Tendero, J.Á., Paredes, P. & Theofilis, V. 2017 Linear instability in the wake of an elliptic wing. Theor. Comput. Fluid Dyn. 31 (5–6), 483504.CrossRefGoogle Scholar
Heaton, C.J. 2007 a Centre modes in inviscid swirling flows and their application to the stability of the Batchelor vortex. J. Fluid Mech. 576, 325348.CrossRefGoogle Scholar
Heaton, C.J. 2007 b Optimal growth of the Batchelor vortex viscous modes. J. Fluid Mech. 592, 495505.CrossRefGoogle Scholar
Hein, S. & Theofilis, V. 2004 On instability characteristics of isolated vortices and models of trailing-vortex systems. Comput. Fluids 33, 741753.CrossRefGoogle Scholar
Jacobs, R.G. & Durbin, P.A. 1998 Shear sheltering and the continuous spectrum of the Orr–Sommerfeld equation equation. Phys. Fluids 10 (8), 20062011.CrossRefGoogle Scholar
Jimenez, J. 1975 Stability of a pair of co-rotating vortices. Phys. Fluids 18, 15801581.CrossRefGoogle Scholar
Khorrami, R.M. 1991 On the viscous modes of instability of a trailing line vortex. J. Fluid Mech. 225, 197212.CrossRefGoogle Scholar
Khorrami, R.M., Malik, M.R. & Ash, R.L. 1989 Application of spectral collocation techniques to the stability of swirling flows. J. Comput. Phys. 81, 206229.CrossRefGoogle Scholar
Lacaze, L., Birbaud, A.-L. & Le Dizès, S. 2005 Elliptic instability in a Rankine vortex with axial flow. Phys. Fluids 17, 017101.CrossRefGoogle Scholar
Lacaze, L., Ryan, K. & Le Dizès, S. 2007 Elliptic instability in a strained Batchelor vortex. J. Fluid Mech. 577, 341361.CrossRefGoogle Scholar
Laporte, F. & Corjon, A. 2011 Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12, 1016.CrossRefGoogle Scholar
Le Dizés, S. & Fabre, D. 2007 Large-Reynolds-number asymptotic analysis of viscous centre modes in vortices. J. Fluid Mech. 585, 153180.CrossRefGoogle Scholar
Le Dizès, S. & Verga, A. 2002 Viscous interactions of two co-rotating vortices before merging. J. Fluid Mech. 467, 389410.CrossRefGoogle Scholar
Leibovich, S. & Stewartson, K. 1983 A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 126, 335356.CrossRefGoogle Scholar
Lessen, M. & Paillet, F. 1974 The stability of a trailing line vortex. Part 2. Viscous theory. J. Fluid Mech. 65, 769779.CrossRefGoogle Scholar
Lessen, M., Singh, P.J. & Paillet, F. 1974 The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech. 63, 753763.CrossRefGoogle Scholar
Leweke, T. & Williamson, C.H.K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.CrossRefGoogle Scholar
Mack, L.M. 1976 A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73 (3), 497520.CrossRefGoogle Scholar
Malik, M.R., Zang, T.A. & Hussaini, M.Y. 1985 A spectral collocation method for the Navier–Stokes equations. J. Comput. Phys. 61 (1), 6488.CrossRefGoogle Scholar
Mao, X. & Sherwin, S.J. 2011 Continuous spectra of the Batchelor vortex. J. Fluid Mech. 681, 123.CrossRefGoogle Scholar
Mao, X., Sherwin, S.J. & Blackburn, H.M. 2012 Non-normal dynamics of time-evolving co-rotating vortex pairs. J. Fluid Mech. 701, 430459.CrossRefGoogle Scholar
Mayer, E.W. & Powell, K.G. 1992 Viscous and inviscid instabilities of a trailing vortex. J. Fluid Mech. 245, 91114.CrossRefGoogle Scholar
Moore, D.W. & Saffman, P.G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346 (1646), 413425.Google Scholar
Navrose, , Johnson, H.G., Brion, V., Jacquin, L. & Robinet, J.C. 2018 Optimal perturbation for two-dimensional vortex systems: route to non-axisymmetric state. J. Fluid Mech. 855, 922952.CrossRefGoogle Scholar
Oberleithner, K., Sieber, M., Nayeri, C.N. & Paschereit, C.O. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.CrossRefGoogle Scholar
Paredes, P. 2014 Advances in global instability computations: from incompressible to hypersonic flow. PhD thesis, Polytechnic University of Madrid.Google Scholar
Pradeep, D.S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J. Fluid Mech. 550, 251288.CrossRefGoogle Scholar
Roy, C., Leweke, T., Thompson, M.C. & Hourigan, K. 2011 Experiments on the elliptic instability in vortex pairs with axial core flow. J. Fluid Mech. 677, 383416.CrossRefGoogle Scholar
Roy, C., Schaeffer, N., Le Dizés, S. & Thompson, M. 2008 Stability of a pair of co-rotating vortices with axial flow. Phys. Fluids 20, 094101.CrossRefGoogle Scholar
Schmid, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Sipp, D. & Jacquin, L. 2003 Widnall instabilities in vortex pairs. Phys. Fluids 15 (7), 18611874.CrossRefGoogle Scholar
Spalart, P.R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30, 107138.CrossRefGoogle Scholar
Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39, 249315.CrossRefGoogle Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319352.CrossRefGoogle Scholar
Theofilis, V., Duck, P.W. & Owen, J. 2004 Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249286.CrossRefGoogle Scholar
Tsai, C.Y. & Widnall, S. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73, 721733.CrossRefGoogle Scholar
Whitcomb, R.T. 1976 A design approach and selected wind-tunnel results at high subsonic speeds for wing-tip mounted winglets. NASA Tech. Rep. TN D-8260. July. NASA Langley Research Center.Google Scholar
Zaki, T.A. & Durbin, P.A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.CrossRefGoogle Scholar
Zaki, T.A. & Saha, S. 2009 On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers. J. Fluid Mech. 626, 111147.CrossRefGoogle Scholar
Zang, W. & Prasad, A.K. 1997 Performance evaluation of a Scheimpflug stereocamera for particle image velocimetry. Appl. Opt. 36 (33), 87388744.CrossRefGoogle ScholarPubMed