Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T06:00:12.632Z Has data issue: false hasContentIssue false

On the correlation between temperature and velocity dissipation fields in a heated turbulent jet

Published online by Cambridge University Press:  29 March 2006

R. A. Antonia
Affiliation:
Department of Mechanical Engineering, University of Sydney, New South Wales 2006
C. W. Van Atta
Affiliation:
Department of Applied Mechanics and Engineering Sciences, University of California, San Diego

Abstract

A few statistical properties of fine-scale velocity and temperature fluctuations have been measured on the axis of symmetry of a heated turbulent round jet. The probability density of ∂θ/∂x, the streamwise derivative of the temperature fluctuation, is strongly negatively skewed, indicating a lack of isotropy for the fine-scale temperature structure. An estimate of the correlation between the velocity and temperature dissipation fields has been obtained by assuming that the dissipation of velocity and dissipation of temperature can be approximated by (∂θ/∂x)2, where u is the streamwise velocity fluctuation, and (∂θ/∂x)2r respectively. The correlation between the quantities (∂θ/∂x)2r and (∂θ/∂x)2r averages over a volume of linear dimension r, is fairly high and depends on the choice of r. An analysis shows that this correlation plays a vital role in the prediction of high-order structure functions of u and θ. The assumed lognormality of the probability density of (∂θ/∂x)2r and (∂θ/∂x)2r and of their joint density is found to be reasonable over a range of r corresponding to the inertial subrange.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. 1973 Some small scale properties of boundary layer turbulence. Phys. Fluids, 16, 1198Google Scholar
Antonia, R. A. 1974 The distribution of temperature in the intermittent region of a turbulent shear flow. Proc. 5th Int. Heat Transfer Conf., Tokyo, vol. 2, p. 92.Google Scholar
Antonia, R. A. & Atkinson, J. D. 1973 High-order moments of Reynolds shear stress fluctuations in a turbulent boundary layer. J. Fluid Mech., 58, 581Google Scholar
Antonia, R. A. & Bilger, R. W. 1973 An experimental investigation of an axisymmetric jet in a co-flowing air stream. J. Fluid Mech., 61, 805Google Scholar
Antonia, R. A. & Van Atta, C. W. 1974 Prediction of high-order moments of turbulent temperature derivatives for large Reynolds numbers. Phys. Fluids (in press).Google Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Clay, J. P. 1973 Turbulent mixing of temperature in water. air and mercury. Ph.D. thesis, University of California, San Diego.
Fiedler, H. 1974 Transport of heat across a plane turbulent mixing layer. Adv. in. Geophys. (in press).Google Scholar
Frepmuth, P. & Uberoi, M. S. 1971 Structure of temperature fluctuations in the turbulent wake behind a heated cylinder. Phys. Fluids, 14, 2574Google Scholar
Freymuth, P. & Uberoi, M. S. 1973 Temperature fluctuations in the turbulent wake behind an optically heated sphere. Phys. Fluids, 16, 161Google Scholar
Friehe, C., Van Atta, C. W. & Gibson, C. 1972 Jet turbulence dissipation rate measurements and correlations. AGARD Current Paper, no. 93, 181.Google Scholar
Gibson, C. H. & Masiello, P. 1972 Observations of the variability of dissipation rates of turbulent velocity and temperature fields. In Statistical Models and Turbulence. Lecture Notes in Physics, vol. 12 (ed. XI. Rosenblatt & C. Van Atta), p. 427. Springer.
Gibson, C. H., Stegen, G. R. & Williams, R. B. 1970 Statistics of the fine structure of turbulent velocity and temperature fields measured a t high Reynolds number. J. Fluid Mech., 41, 153Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl. Akad. Nauk. S.S.S.R., 30, 301Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid a t high Reynolds number. J. Fluid Mech., 13, 82Google Scholar
Kuo, A. Y. & Corrsin, S. 1971 Experiments on internal intermittency and he-structure distribution functions in fully turbulent fluid. J. Fluid Mech., 50, 285Google Scholar
Masiello, P. J. 1974 Intermittency of the fine structure of turbulent velocity and temperature fields measured a t high Reynolds number. Ph.D. thesis, University of California, San Diego.
Novikov, E. A. 1971 Intermittency and scale similarity in the structure of a turbulent flow. Prikl. Math. Mech., 35, 266Google Scholar
Oboukhov, A. M. 1962 Some specific features of atmospheric turbulence. J. Fluid Mech., 13, 77Google Scholar
Paquin, J. E. & Pond, S. 1971 The determination of the Kolmogoroff constants for velocity, temperature and humidity fluctuations from second- and third-order structure functions. J. Fluid Mech., 50, 257Google Scholar
Saffman, P. G. 1968 Lectures on homogeneous turbulence. In Topics in Non-Linear Physics (ed. N. Zabusky), p. 485. Springer.
Van Atta, C. W. 1971 Influence of fluctuations in local dissipation rates on turbulent scalar characteristics in the inertial subrange. Phys. Fluids, 14, 1803Google Scholar
Van Atta, C. W. 1973 On the moments of turbulent velocity derivatives for large Reynolds numbers. Charles Kolling Res. Lab., Dept. Mech. Engng, University of Sydney, Tech. Note, F-49.Google Scholar
Van Atta, C. W. 1974 Influence of fluctuations in dissipation rates on some statistical properties of turbulent scalar fields. Izv. Atmos. Ocean. Phys. 7 (in press).Google Scholar
Van Atta, C. W. & Chen, W. Y. 1970 Structure functions of turbulence in the atmospheric boundary layer over the ocean. J. Fluid Mech., 44, 145Google Scholar
Wyngaard, J. C. 1968 Measurements of small-scale turbulence structure with hot wires. J. Sci. Instrum., J. Phys. E 1, 1105.Google Scholar
Wyngaard, J. C. 1971a Spatial resolution of a resistance wire temperature sensor. Phys. Fluids, 14, 2052Google Scholar
Wyngaard, J. C. 1971b The effect of velocity sensitivity on temperature derivative statistics in isotropic turbulence. J. Fluid Mech., 48, 763Google Scholar
Wyngaard, J. C. & Pao, Y. H. 1972 Some measurements of the h e structure of large Reynolds number turbulence. In Statistical Models and Turbulence. Lecture Notes in Physics, vol. 12 (ed. M. Rosenblatt & C. Van Atta), p. 384. Springer.
Wyngaard, J. C. & Tennekes, H. 1970 Measurements of the small-scale structure of turbulence a t moderate Reynolds numbers. Phys. Fluids, 13, 1962Google Scholar
Yaglom, A. M. 1949 On the local structure of the temperature field in a turbulent flow. Dokl. Akad. Nauk. S.S.S.R., 69, 743Google Scholar
Yaglom, A. M. 1966 The influence of fluctuations in energy dissipation on the shape of turbulence characteristics in the inertial interval. Sov. Phys. Dokl., 11, 26Google Scholar