Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T01:16:17.839Z Has data issue: false hasContentIssue false

On the role of the ambient fluid on gravitational granular flow dynamics

Published online by Cambridge University Press:  07 April 2010

C. MERUANE*
Affiliation:
Departamento de Ingeniería Civil, Universidad de Chile, Blanco Encalada 2002, Casilla 228-3, Santiago, Chile Laboratoire Magmas et Volcans, UMR Unversité Blaise Pascal-CNRS-IRD, 5 rue Kessler, 63038 Clermont-Ferrand, France
A. TAMBURRINO
Affiliation:
Departamento de Ingeniería Civil, Universidad de Chile, Blanco Encalada 2002, Casilla 228-3, Santiago, Chile
O. ROCHE
Affiliation:
Laboratoire Magmas et Volcans, UMR Unversité Blaise Pascal-CNRS-IRD, 5 rue Kessler, 63038 Clermont-Ferrand, France
*
Email address for correspondence: cmeruane@ing.uchile.cl

Abstract

The effects of the ambient fluid on granular flow dynamics are poorly understood and commonly ignored in analyses. In this article, we characterize and quantify these effects by combining theoretical and experimental analyses. Starting with the mixture theory, we derive a set of two-phase continuum equations for studying a compressible granular flow composed of homogenous solid particles and a Newtonian ambient fluid. The role of the ambient fluid is then investigated by studying the collapse and spreading of two-dimensional granular columns in air or water, for different solid particle sizes and column aspect (height to length) ratios, in which the front speed is used to describe the flow. The combined analysis of experimental measurements and numerical solutions shows that the dynamics of the solid phase cannot be explained if the hydrodynamic fluid pressure and the drag interactions are not included in the analysis. For instance, hydrodynamic fluid pressure can hold the reduced weight of the solids, thus inducing a transition from dense-compacted to dense-suspended granular flows, whereas drag forces counteract the solids movement, especially within the near-wall viscous layer. We conclude that in order to obtain a realistic representation of gravitational granular flow dynamics, the ambient fluid cannot be neglected.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ancey, C. 2007 Plasticity and geophysical flows: a review. J. Non-Newtonian Fluid Mech. 142, 435.CrossRefGoogle Scholar
Anderson, T. B. & Jackson, R. 1967 A fluid mechanical description of fluidized beds: equations of motion. Ind. Engng Chem. Fundam. 6, 527539.CrossRefGoogle Scholar
Bagnold, R. A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. Ser. A 225, 4963.Google Scholar
Balmforth, N. J. & Kerswell, R. R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538, 399428.CrossRefGoogle Scholar
Bedford, A. 1983 Recent advances: theories of immiscible and structured mixtures. Intl J. Engng Sci. 21, 863960.CrossRefGoogle Scholar
Boussinesq, J. 1877 Théorie de l'écoulement tourbillant. Mem. Présentés par Divers Savants Acad. Sci. Inst. Fr. 23, 4650.Google Scholar
Campbell, C. 1990 Rapid granular flows. Annu. Rev. Fluid Mech. 22, 5792.CrossRefGoogle Scholar
Campbell, C. 2006 Granular material flows: an overview. Powder Technol. 162, 208229.CrossRefGoogle Scholar
Cassar, C., Nicolas, M. & Pouliquen, O. 2005 Submarine granular flows down inclined planes. Phys. Fluids 17, 103301.CrossRefGoogle Scholar
Crowe, C. T. 2000 On models for turbulence modulation in fluid-particle flows. Intl J. Multiphase Flow 26, 719727.CrossRefGoogle Scholar
Crowe, C. T., Troutt, R. & Chung, J. N. 1996 Numerical models for two-phase turbulent flows. Annu. Rev. Fluid. Mech. 28, 1143.CrossRefGoogle Scholar
Dallavalle, J. M. 1948 Micromeritics: The Technology of Fine Particles, 2nd ed. Pitman.Google Scholar
Di Felice, R. 1994 The voidage function for fluid–particle interaction systems. Intl J. Multiphase Flow 20, 153159.CrossRefGoogle Scholar
Di Felice, R. 1995 Hydrodynamics of liquid fluidisation. Chem. Engng Sci. 50, 12131245.CrossRefGoogle Scholar
Drew, D. A. 1983 Mathematical modelling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261291.CrossRefGoogle Scholar
Elghobashi, S. & Truesdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. II. Turbulence modification. Phys. Fluids 5, 17901801.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 124.CrossRefGoogle Scholar
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.CrossRefGoogle Scholar
Goodman, M. & Cowin, S. 1971 Two problems in the gravity flow of granular materials. J. Fluid Mech. 45, 321339.CrossRefGoogle Scholar
Hutter, K., Wang, Y. & Pudasaini, S. 2005 The Savage–Hutter avalanche model: how far can it be pushed? Phil. Trans. R. Soc. A 363, 1507 – 1528.CrossRefGoogle ScholarPubMed
Iverson, R. 1997 The physics of debris flows. Rev. Geophys. 35, 245296.CrossRefGoogle Scholar
Iverson, R. & Denlinger, R. 2001 Flow of variably fluidized granular masses across three-dimensional terrain. 1. Coulomb mixture theory. J. Geophys. Res. 106, 537552.CrossRefGoogle Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Jenkins, J. T. & Savage, S. B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187202.CrossRefGoogle Scholar
Johnson, P. C. & Jackson, R. 1987 Frictional–collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 6793.CrossRefGoogle Scholar
Joseph, D. & Lundgren, T. 1990 Ensemble averaged and mixture theory equations for incompressible fluid–particle suspensions. Intl J. Multiphase Flow 16, 3542.CrossRefGoogle Scholar
Kármán, T. von 1940 The engineer grapples with nonlinear problems. Bull. Am. Math. Soc. 46, 615683.CrossRefGoogle Scholar
Lajeunesse, E., Monnier, J. & Homsy, G. 2005 Granular slumping on a horizontal surface. Phys. Fluids 17, 103302.CrossRefGoogle Scholar
Larrieu, E., Staron, L. & Hinch, E. 2006 Raining into shallow water as a description of the collapse of a column of grains. J. Fluid Mech. 554, 259270.CrossRefGoogle Scholar
Lube, G., Huppert, H., Sparks, R. & Freundt, A. 2005 Collapses of two-dimensional granular columns. Phys. Rev. E 72, 041301.CrossRefGoogle ScholarPubMed
Lun, C. K. K., Savage, B. & Jeffrey, D. J. 1984 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech. 140, 223256.CrossRefGoogle Scholar
MiDi, GDR 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.CrossRefGoogle Scholar
Morland, L. W. 1992 Flow of viscous fluids through a porous deformable matrix. Surv. Geophys. 13, 209268.CrossRefGoogle Scholar
Morland, L. & Sellers, S. 2001 Multiphase mixtures and singular surfaces. Intl J. Non-Linear Mech. 36, 131146.CrossRefGoogle Scholar
Passman, S. L., Nunziato, J. W. & Walsh, E. K. 1984 A Theory of Multiphase Mixtures. Appendix 5C, Rational thermodynamics (ed. Truesdell, C.), pp. 286325. Springer.Google Scholar
Patankar, S.V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere.Google Scholar
Pitman, B. & Le, L. 2005 A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc. A 363, 15731601.CrossRefGoogle ScholarPubMed
Pope, S. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Reynolds, O. 1895 On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. A 186, 121161.Google Scholar
Rodi, W. 1983 Turbulence Models and Their Application in Hydraulics: A State-Of-The-Art Review. IAHR.Google Scholar
Savage, S. B. 1983 Mechanical of granular materials: new models and constitutive relations. In Granular Flows Down Rough Inclines: Review and Extension (ed. Jenkins, J. T. and Satake, M.), pp. 261282. Elsevier.Google Scholar
Staron, L. & Hinch, E. J. 2005 Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 127.CrossRefGoogle Scholar
Stewart, H. B. & Wendroff, B. 1984 Two-phase flow: models and methods. J. Comput. Phys. 56, 363409.CrossRefGoogle Scholar
Sundaresan, S. 2003 Instabilities in fluidized beds. Annu. Rev. Fluid Mech. 35, 6388.CrossRefGoogle Scholar
Truesdell, C. 1957 Sulle basi della thermomecanica. Rand Lincei, Ser. 8, 3338.Google Scholar
Truesdell, C. 1984 Rational Thermodynamics. Springer.CrossRefGoogle Scholar
Wang, Y. & Hutter, K. 2001 Geomorphological fluid mechanics. In Granular Material Theories Revisited (ed. Balmforth, N. J. and Provenzale, A.), pp. 79107. Springer.Google Scholar
Ystrom, J. 2001 On two-fluid equations for dispersed incompressible two-phase flow. Comput. Visual. Sci. 4, 125135.Google Scholar