Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T08:25:28.514Z Has data issue: false hasContentIssue false

Onset of global instability in the flow past a circular cylinder cascade

Published online by Cambridge University Press:  03 December 2010

V. B. L. BOPPANA
Affiliation:
School of Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
J. S. B. GAJJAR*
Affiliation:
School of Mathematics, The University of Manchester, Alan Turing Building, Manchester, M13 9PL, UK
*
Email address for correspondence: j.gajjar@manchester.ac.uk

Abstract

The effect of blockage on the onset of instability in the two-dimensional uniform flow past a cascade of cylinders is investigated. The same techniques as those described in Gajjar & Azzam (J. Fluid Mech., vol. 520, 2004, p. 51) are used to tackle the generalized eigenvalue problem arising from a global stability analysis of the linearized disturbance equations. Results have been obtained for the various mode classes, and our results show that for the odd–even modes, which correspond to anti-phase oscillatory motion about the midplane between the cylinders and are the modes most extensively studied in the literature, the effect of blockage has a marginal influence on the critical Reynolds numbers for instability. This is in sharp contrast to results cited in many studies with a fully developed inlet flow past a cylinder placed between confining walls. We are also able to find other unstable modes and in particular for low blockage ratios, the odd–odd modes which correspond to the in-phase oscillatory motion about the midplane between the cylinders are the first to become unstable as compared with the odd–even modes, and with much lower frequencies.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adbessemed, N., Sharma, A., Sherwin, S. & Theofilis, V. 2009 Transient growth analysis of the flow past a circular cylinder. Phys. Fluids 21, 044103.Google Scholar
Akinaga, T. & Mizushima, J. 2005 Linear stability of flow past two cylinders in a side-by-side arrangement. J. Phys. Soc. Japan 74, 13661369.CrossRefGoogle Scholar
Barkley, D., Blackburn, H. M. & Sherwin, S. J. 2008 Direct growth analysis for timesteppers. Intl J. Numer. Fluids 57, 14351458.CrossRefGoogle Scholar
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.CrossRefGoogle Scholar
Behr, M., Liou, J., Shih, R. & Tezduyar, T. E. 1991 Vorticity–streamfunction formulation of unsteady incompressible flow past a cylinder: sensitivity of the computed flow field to the location of the outflow boundary. Intl J. Numer. Fluids 12, 323342.CrossRefGoogle Scholar
Blackburn, H. M., Sherwin, S. J. & Barkley, D. 2008 Convective instability and transient growth in steady and pulsatile stenotic flows. J. Fluid Mech. 607, 267277.CrossRefGoogle Scholar
Boppana, V. B. L. 2007 Flow instability in a lid-driven cavity and circular cylinder cascade. PhD thesis, University of Manchester.Google Scholar
Boppana, V. B. L. & Gajjar, J. S. B. 2010 Global flow instability in a lid-driven cavity. Intl J. Numer. Fluids 62, 827853.CrossRefGoogle Scholar
Cadou, J. M., Potier-Ferry, M. & Cochelin, B. 2006 A numerical method for the computation of bifurcation points in fluid mechanics. Eur. J. Mech. B Fluids 25, 234254.CrossRefGoogle Scholar
Camarri, S. & Giannetti, F. 2007 On the inversion of the von Kármán street in the wake of a confined square cylinder. J. Fluid Mech. 574, 169178.CrossRefGoogle Scholar
Canuto, C. A., Hussaini, M. Y. & Zang, T. 1987 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Castro, I. P. 2005 The stability of laminar symmetric wakes. J. Fluid Mech. 532, 389411.CrossRefGoogle Scholar
Chen, J. H., Pritchard, W. G. & Tavener, S. J. 1995 Bifurcation for flow past a cylinder between parallel planes. J. Fluid Mech. 284, 2341.CrossRefGoogle Scholar
Coutanceau, M. & Bouard, R. 1977 Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. J. Fluid Mech. 79, 231256.CrossRefGoogle Scholar
Coutanceau, M. & Defaye, J. R. 1991 Circular cylinder wake configurations. Appl. Mech. Rev. 44, 255305.CrossRefGoogle Scholar
Davies, C. & Carpenter, P. W. 2003 Global behaviour corresponding to absolute instability of the rotating-disc boundary layer. J. Fluid Mech. 486, 287329.CrossRefGoogle Scholar
Ding, Y. 2003 Computation of leading eigenvalues and eigenvectors in the linearized Navier–Stokes equations using Krylov subspace method. Intl J. Comput. Fluid Dyn. 17 (4), 327337.CrossRefGoogle Scholar
Ding, Y. & Kawahara, M. 1999 Three-dimensional linear stability analysis of incompressible viscous flows using the finite element method. Intl J. Numer. Meth. Fluids 31, 451479.3.0.CO;2-O>CrossRefGoogle Scholar
Fasel, H. F. 1976 Investigation of the stability of boundary layers by a finite-difference model of the Navier–Stokes equations. J. Fluid Mech. 78, 355383.CrossRefGoogle Scholar
Fornberg, B. 1985 Steady viscous flow past a circular cylinder up to Reynolds number 600. J. Comput. Phys. 61, 297320.CrossRefGoogle Scholar
Fornberg, B. 1991 Steady incompressible flow past a row of circular cylinders. J. Fluid Mech. 225, 655671.CrossRefGoogle Scholar
Gajjar, J. S. B. & Azzam, N. A. 2004 Numerical solution of the Navier–Stokes equations for the flow in a cylinder cascade. J. Fluid Mech. 520, 5182.CrossRefGoogle Scholar
Gallaire, F., Marquille, M. & Ehrenstein, U. 2007 Three-dimensional transverse instabilities in detached boundary layers. J. Fluid Mech. 571, 221233.CrossRefGoogle Scholar
Goujan-Durand, S., Jenffer, P. & Wesfreid, J. E. 1994 Downstream evolution of the Bénard–von Kármán instability. Phys. Rev. E 50 (1), 308313.Google Scholar
Gresho, P. M., Chan, S. T., Lee, R. L. & Upson, C. D. 1984 A modified finite element method for solving the time-dependent, incompressible Navier–Stokes equations. Part 2. Applications. Intl J. Numer. Fluids 4, 619640.CrossRefGoogle Scholar
Henderson, R. D. 1995 Details of the drag curve near the onset of vortex shedding. Phys. Fluids 7 (9), 21022104.CrossRefGoogle Scholar
Hultgren, L. & Aggarwal, A. K. 1987 Absolute instability of the Gaussian wake profiles. Phys. Fluids 30, 33833387.CrossRefGoogle Scholar
Jackson, C. P. 1987 A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182, 2345.CrossRefGoogle Scholar
Kang, S. 2003 Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Phys. Fluids 15 (9), 24862498.CrossRefGoogle Scholar
Kovásznay, L. S. G. 1949 Hot-wire investigation of the wake behind cylinders at low Reynolds numbers. Proc. R. Soc. Lond. A 198 (1053), 174190.Google Scholar
Kumar, B., Kottaram, J. J., Singh, A. K. & Mittal, S. 2009 Global stability of flow past a cylinder with centreline symmetry. J. Fluid. Mech. 632, 273300.CrossRefGoogle Scholar
Kumar, B. & Mittal, S. 2006 Effect of blockage on critical parameters for flow past a circular cylinder. Intl J. Numer. Fluids 50, 9871001.CrossRefGoogle Scholar
Lehoucq, R. B., Sorensen, D. C. & Yang, C. 1988 ARPACK User's Guide, Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.Google Scholar
Lingwood, R. J. 1995 Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech. 299, 1733.CrossRefGoogle Scholar
Marquet, O., Sipp, D., Chomaz, J. M. & Jacquin, L. 2008 Amplifier and resonator dynamics of a low-Reynolds-number recirculation bubble in a global framework. J. Fluid Mech. 605, 429443.CrossRefGoogle Scholar
Marquille, M. & Ehrenstein, U. 2003 On the onset of nonlinear oscillations in a separating boundary-layer flow. J. Fluid Mech. 490, 169188.CrossRefGoogle Scholar
Mittal, S., Kottaram, J. J. & Kumar, B. 2008 Onset of shear layer instability in flow past a cylinder. Phys. Fluids 20, 054102 (110).CrossRefGoogle Scholar
Mizushima, J. & Ino, Y. 2008 Stability of flows past a pair of circular cylinders in a side-by-side arrangement. J. Fluid Mech. 595, 491507.CrossRefGoogle Scholar
Morzyński, M., Afanasiev, K. & Thiele, F. 1999 Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis. Comput. Meth. Appl. Mech. Engng 169, 161176.CrossRefGoogle Scholar
Morzyński, M. & Thiele, F. 1991 Numerical stability analysis of a flow about a cylinder. Z. Angew. Math. Mech. 71 (5), 424428.Google Scholar
Nishioka, M. & Sato, H. 1978 Mechanism of determination of the shedding frequency of vortices behind a cylinder at low Reynolds numbers. J. Fluid Mech. 89, 4960.CrossRefGoogle Scholar
Noack, B. R. & Eckelmann, H. 1994 A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297330.CrossRefGoogle Scholar
Peschard, I. & Le Gal, P. 1996 Coupled wakes of cylinders. Phys. Rev. Lett. 77, 31223125.CrossRefGoogle ScholarPubMed
Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407417.CrossRefGoogle Scholar
Pier, B. 2008 Local and global instabilities in the wake of a sphere. J. Fluid Mech. 603, 3961.CrossRefGoogle Scholar
Pier, B. & Huerre, P. 2001 Nonlinear self-sustained structures and fronts in spatially developing wake flows. J. Fluid Mech. 435, 145174.CrossRefGoogle Scholar
Saad, Y. 1989. Numerical solution of large nonsymmetric eigenvalue problems. Comput. Phys. Commun. 53, 7190.CrossRefGoogle Scholar
Sahin, M. & Owens, R. G. 2004 A numerical investigation of wall effects up to high blockage ratios on two–dimensional flow past a confined circular cylinder. Phys. Fluids 16 (5), 13051320.CrossRefGoogle Scholar
Shair, F. H., Grove, A. S., Petersen, E. E. & Acrivos, A. 1963 The effect of confining walls on the stability of the steady wake behind a circular cylinder. J. Fluid Mech. 17, 546550.CrossRefGoogle Scholar
Strykowski, P. J. & Hannemann, K. 1991 Temporal simulation of the wake behind a circular cylinder in the neighborhood of the critical Reynolds number. Acta Mechanica 90, 120.CrossRefGoogle Scholar
Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aero. Sci. 39, 249315.CrossRefGoogle Scholar
Tuckerman, L. S. & Barkley, D. 2000 Bifurcation analysis for timesteppers. In Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems (ed. Doedel, E. & Tuckerman, L. S.), pp. 453566. Springer.CrossRefGoogle Scholar
Williamson, C. H. K. 1985 Sinusoidal flow relative to circular cylinders. J. Fluid Mech. 155, 141174.CrossRefGoogle Scholar
Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.CrossRefGoogle Scholar
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar
Yang, X. & Zebib, A. 1989 Absolute and convective instability of a cylinder wake. Phys. Fluids A 1 (4), 689696.CrossRefGoogle Scholar
Zebib, A. 1987 Stability of viscous flow past a circular cylinder. J. Engng Maths 21, 155165.CrossRefGoogle Scholar