Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T08:01:43.986Z Has data issue: false hasContentIssue false

Oscillations of the large-scale circulation in experimental liquid metal convection at aspect ratios 1.4–3

Published online by Cambridge University Press:  06 October 2022

Jonathan S. Cheng*
Affiliation:
Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
Ibrahim Mohammad
Affiliation:
Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
Bitong Wang
Affiliation:
Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
Declan F. Keogh
Affiliation:
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Jarod M. Forer
Affiliation:
Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
Douglas H. Kelley
Affiliation:
Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
*
Email address for correspondence: j.s.cheng@rochester.edu

Abstract

We investigate the scaling properties of the primary flow modes and their sensitivity to aspect ratio in a liquid gallium (Prandtl number $Pr = 0.02$) convection system through combined laboratory experiments and numerical simulations. We survey cylindrical aspect ratios $1.4 \le \varGamma \le 3$ and Rayleigh numbers $10^{4} \lesssim Ra \lesssim 10^{6}$. In this range the flow is dominated by a large-scale circulation (LSC) subject to low-frequency oscillations. In line with previous studies, we show robust scaling of the Reynolds number $Re$ with $Ra$ and we confirm that the LSC flow is dominated by a jump-rope vortex (JRV) mode whose signature frequency is present in velocity and temperature measurements. We further show that both $Re$ and JRV frequency scaling trends are relatively insensitive to container geometry. The temperature and velocity spectra consistently show peaks at the JRV frequency, its harmonic and a secondary mode. The relative strength of these peaks changes and the presence of the secondary peak depend highly on aspect ratio, indicating that, despite having a minimal effect on typical velocities and frequencies, the aspect ratio has a significant effect on the underlying dynamics. Applying a bandpass filter at the secondary frequency to velocity measurements reveals that a clockwise twist in the upper half of the fluid layer coincides with a counterclockwise twist in the bottom half, indicating a torsional mode. For aspect ratio $\varGamma = 3$, the unified LSC structure breaks down into multiple rolls in both simulation and experiment.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Akashi, M., Yanagisawa, T., Sakuraba, A., Schindler, F., Horn, S., Vogt, T. & Eckert, S. 2022 Jump rope vortex flow in liquid metal Rayleigh–Bénard convection in a cuboid container of aspect ratio. J. Fluid Mech. 932, A27.CrossRefGoogle Scholar
Akashi, M., Yanagisawa, T., Tasaka, Y., Vogt, T., Murai, Y. & Eckert, S. 2019 Transition from convection rolls to large-scale cellular structures in turbulent Rayleigh–Bénard convection in a liquid metal layer. Phys. Rev. Fluids 4 (3), 033501.CrossRefGoogle Scholar
Asai, S. 2012 Electromagnetic processing of materials. In Electromagnetic Processing of Materials (ed. R. Moreau), pp. 87–111. Springer.CrossRefGoogle Scholar
Aurnou, J.M., Bertin, V., Grannan, A.M., Horn, S. & Vogt, T. 2018 Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns. J. Fluid Mech. 846, 846876.CrossRefGoogle Scholar
Aurnou, J.M., Calkins, M.A., Cheng, J.S., Julien, K., King, E.M., Nieves, D., Soderlund, K.M. & Stellmach, S. 2015 Rotating convective turbulence in Earth and planetary cores. Phys. Earth Planet. Inter. 246, 5271.CrossRefGoogle Scholar
Aurnou, J.M. & Olson, P.L. 2001 Experiments on Rayleigh–Bénard convection, magnetoconvection and rotating magnetoconvection in liquid gallium. J. Fluid Mech. 430, 283307.CrossRefGoogle Scholar
Brandes, E.A. & Brook, G.B. 1992 Smithells Metals Reference Book, 7th edn. Butterworth-Heinemann.Google Scholar
Brown, E. & Ahlers, G. 2006 Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501.CrossRefGoogle ScholarPubMed
Brown, E. & Ahlers, G. 2009 The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection. J. Fluid Mech. 638, 383400.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability, 1st edn. Oxford University Press.Google Scholar
Cheng, J.S., Wang, B., Mohammad, I., Forer, J.M. & Kelley, D.H. 2021 Laboratory model of electrovortex flow with thermal gradients, for liquid metal batteries. Exp. Fluids (submitted) arXiv:2108.01648.Google Scholar
Ching, E.S.C., Leung, H.S., Zwirner, L. & Shishkina, O. 2019 Velocity and thermal boundary layer equations for turbulent Rayleigh–Bénard convection. Phys. Rev. Res. 1 (3), 033037.CrossRefGoogle Scholar
Cioni, S., Ciliberto, S. & Sommeria, J. 1996 Experimental study of high-Rayleigh-number convection in mercury and water. Dyn. Atmos. Ocean. 24 (1–4), 117127.CrossRefGoogle Scholar
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.CrossRefGoogle Scholar
Davidson, H.W. 1968 Compilation of thermophysical properties of liquid lithium. Report No. NASA TN-D-4650.Google Scholar
Frick, P., Khalilov, R., Kolesnichenko, I., Mamykin, A., Pakholkov, V., Pavlinov, A. & Rogozhkin, S. 2015 Turbulent convective heat transfer in a long cylinder with liquid sodium. Europhys. Lett. 109 (1), 14002.CrossRefGoogle Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92 (19), 194502.CrossRefGoogle Scholar
Glazier, J.A., Segawa, T., Naert, A. & Sano, M. 1999 Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers. Nature 398, 307310.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Hanasoge, S., Gizon, L. & Sreenivasan, K.R. 2016 Seismic sounding of convection in the Sun. Annu. Rev. Fluid Mech. 48, 191217.CrossRefGoogle Scholar
Horn, S., Schmid, P.J. & Aurnou, J.M. 2021 Unravelling the large-scale circulation modes in turbulent Rayleigh–Bénard convection. Europhys. Lett. 136 (1), 14003.CrossRefGoogle Scholar
Iida, T. & Guthrie, R.I.L. 2015 a The Thermophysical Properties of Metallic Liquids: Volume 1: Fundamentals. Oxford University Press.Google Scholar
Iida, T. & Guthrie, R.I.L. 2015 b The Thermophysical Properties of Metallic Liquids: Volume 2: Predictive Models. Oxford University Press.Google Scholar
Iida, T., Guthrie, R. & Tripathi, N. 2006 A model for accurate predictions of self-diffusivities in liquid metals, semimetals, and semiconductors. Metall. Mater. Trans. B 37 (4), 559564.CrossRefGoogle Scholar
Kelley, D.H. & Weier, T. 2018 Fluid mechanics of liquid metal batteries. Appl. Mech. Rev. 70 (2), 020801.CrossRefGoogle Scholar
King, E.M., Stellmach, S. & Buffett, B.A. 2013 Scaling behavior in Rayleigh–Bénard convection with and without rotation. J. Fluid Mech. 717, 449471.CrossRefGoogle Scholar
Krishnamurti, R. & Howard, L.N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl Acad. Sci. USA 78, 19811985.CrossRefGoogle ScholarPubMed
Markson, R. 1975 Atmospheric electrical detection of organized convection. Science 188 (4194), 11711177.CrossRefGoogle ScholarPubMed
Nordlund, Å., Stein, R.F. & Asplund, M. 2009 Solar surface convection. Living Rev. Sol. Phys. 6 (1), 1117.CrossRefGoogle ScholarPubMed
Okada, K. & Ozoe, H. 1992 Experimental heat transfer rates of natural convection of molten gallium suppressed under an external magnetic field in either the X, Y, or Z direction. Trans. ASME J. Heat Transfer 114 (1), 107114.CrossRefGoogle Scholar
Pandey, A., Scheel, J.D. & Schumacher, J. 2018 Turbulent superstructures in Rayleigh–Bénard convection. Nat. Commun. 9 (1), 111.CrossRefGoogle ScholarPubMed
Prokhorenko, V.Y., Roshchupkin, V.V., Pokrasin, M.A., Prokhorenko, S.V. & Kotov, V.V. 2000 Liquid gallium: potential uses as a heat-transfer agent. High Temp. USSR 38 (6), 954968.CrossRefGoogle Scholar
Qiu, X.-L. & Tong, P. 2001 Onset of coherent oscillations in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 87 (9), 094501.CrossRefGoogle ScholarPubMed
Rossby, H.T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36 (2), 309335.CrossRefGoogle Scholar
Scheel, J.D. & Schumacher, J. 2016 Global and local statistics in turbulent convection at low Prandtl numbers. J. Fluid Mech. 802, 147173.CrossRefGoogle Scholar
Scheel, J.D. & Schumacher, J. 2017 Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows. Phys. Rev. Fluids 2 (12), 123501.CrossRefGoogle Scholar
Schindler, F., Eckert, S., Zürner, T., Schumacher, J. & Vogt, T. 2022 Collapse of coherent large scale flow in strongly turbulent liquid metal convection. Phys. Rev. Lett. 128 (16), 164501.CrossRefGoogle ScholarPubMed
Schumacher, J., Bandaru, V., Pandey, A. & Scheel, J.D. 2016 Transitional boundary layers in low-Prandtl-number convection. Phys. Rev. Fluids 1 (8), 084402.CrossRefGoogle Scholar
Schumacher, J., Götzfried, P. & Scheel, J.D. 2015 Enhanced enstrophy generation for turbulent convection in low-Prandtl-number fluids. Proc. Natl Acad. Sci. USA 112 (31), 95309535.CrossRefGoogle ScholarPubMed
Schumacher, J. & Scheel, J.D. 2016 Extreme dissipation event due to plume collision in a turbulent convection cell. Phys. Rev. E 94 (4), 043104.CrossRefGoogle Scholar
Shishkina, O., Horn, S., Wagner, S. & Ching, E.S.C. 2015 Thermal boundary layer equation for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 114 (11), 114302.CrossRefGoogle ScholarPubMed
Sun, C. & Xia, K.-Q. 2005 Scaling of the Reynolds number in turbulent thermal convection. Phys. Rev. E 72 (6), 067302.CrossRefGoogle ScholarPubMed
Sun, C., Xia, K.-Q. & Tong, P. 2005 Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72 (2), 026302.CrossRefGoogle Scholar
Takeshita, T., Segawa, T., Glazier, J.A. & Sano, M. 1996 Thermal turbulence in mercury. Phys. Rev. Lett. 76 (9), 1465.CrossRefGoogle ScholarPubMed
Tasaka, Y., Igaki, K., Yanagisawa, T., Vogt, T., Zuerner, T. & Eckert, S. 2016 Regular flow reversals in Rayleigh–Bénard convection in a horizontal magnetic field. Phys. Rev. E 93 (4), 043109.CrossRefGoogle Scholar
Tsuji, Y., Mizuno, T., Mashiko, T. & Sano, M. 2005 Mean wind in convective turbulence of mercury. Phys. Rev. Lett. 94 (3), 034501.CrossRefGoogle ScholarPubMed
Villermaux, E. 1995 Memory-induced low frequency oscillations in closed convection boxes. Phys. Rev. Lett. 75 (25), 4618.CrossRefGoogle ScholarPubMed
Vogt, T., Horn, S., Grannan, A.M. & Aurnou, J.M. 2018 Jump rope vortex in liquid metal convection. Proc. Natl Acad. Sci. USA 115 (50), 1267412679.CrossRefGoogle ScholarPubMed
Xi, H.-D., Zhou, Q. & Xia, K.-Q. 2006 Azimuthal motion of the mean wind in turbulent thermal convection. Phys. Rev. E 73 (5), 056312.CrossRefGoogle ScholarPubMed
Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S. & Xia, K.-Q. 2009 Origin of the temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102 (4), 044503.CrossRefGoogle ScholarPubMed
Xie, Y.-C., Wei, P. & Xia, K.-Q. 2013 Dynamics of the large-scale circulation in high-Prandtl-number turbulent thermal convection. J. Fluid Mech. 717, 322346.CrossRefGoogle Scholar
Xu, Y., Horn, S. & Aurnou, J.M. 2022 Thermoelectric precession in turbulent magnetoconvection. J. Fluid Mech. 930, A8.CrossRefGoogle Scholar
Xu, Q., Oudalov, N., Guo, Q., Jaeger, H.M. & Brown, E. 2012 Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Phys. Fluids 24 (6), 063101.CrossRefGoogle Scholar
Yanagisawa, T., Hamano, Y. & Sakuraba, A. 2015 Flow reversals in low-Prandtl-number Rayleigh–Bénard convection controlled by horizontal circulations. Phys. Rev. E 92 (2), 023018.CrossRefGoogle ScholarPubMed
Zürner, T., Schindler, F., Vogt, T., Eckert, S. & Schumacher, J. 2019 Combined measurement of velocity and temperature in liquid metal convection. J. Fluid Mech. 876, 11081128.CrossRefGoogle Scholar
Zhou, Q., Xi, H.-D., Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2009 Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J. Fluid Mech. 630, 367390.CrossRefGoogle Scholar

Cheng et al. Supplementary Movie 1

See "Cheng et al. Supplementary Captions"

Download Cheng et al. Supplementary Movie 1(Video)
Video 2.7 MB

Cheng et al. Supplementary Movie 2

See "Cheng et al. Supplementary Captions"

Download Cheng et al. Supplementary Movie 2(Video)
Video 768.4 KB

Cheng et al. Supplementary Movie 3

See "Cheng et al. Supplementary Captions"

Download Cheng et al. Supplementary Movie 3(Video)
Video 1.8 MB

Cheng et al. Supplementary Movie 4

See "Cheng et al. Supplementary Captions"

Download Cheng et al. Supplementary Movie 4(Video)
Video 3 MB

Cheng et al. Supplementary Movie 5

See "Cheng et al. Supplementary Captions"

Download Cheng et al. Supplementary Movie 5(Video)
Video 6.8 MB
Supplementary material: PDF

Cheng et al. Supplementary Captions

Cheng et al. Supplementary Captions

Download Cheng et al. Supplementary Captions(PDF)
PDF 57.2 KB