Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T00:29:47.776Z Has data issue: false hasContentIssue false

Oscillatory motion of a viscoelastic fluid within a spherical cavity

Published online by Cambridge University Press:  21 September 2011

Julia Meskauskas
Affiliation:
Department of Engineering of Structures, Water and Soil, University of L’Aquila, Strada provinciale per Monticchio, Monticchio, 67100 L’Aquila, Italy
Rodolfo Repetto*
Affiliation:
Department of Civil, Environmental and Architectural Engineering, University of Genoa, Via Montallegro 1, 16145 Genova, Italy
Jennifer H. Siggers
Affiliation:
Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
*
Email address for correspondence: rodolfo.repetto@unige.it

Abstract

We study the motion of a viscoelastic fluid within a rigid spherical cavity with the aim of improving understanding of the motion of the vitreous humour in the human eye. The flow of vitreous humour leads to traction on the retina, which, once the retina is torn or damaged, can cause it to detach from the choroid, leading to loss of sight if left untreated. In the first part of the paper we investigate the relaxation behaviour of the fluid, the transient flow that would be observed in the stationary sphere starting from non-stationary initial conditions. For a general viscoelastic fluid we calculate the growth rates and eigenfunctions associated with the system, and we discuss two particular rheological models of the vitreous humour taken from the literature. In the second part of the paper we consider forced oscillations of the fluid, due to small-amplitude rotations of the sphere about a diameter, representing saccades of the eyeball. We conclude with a discussion of the possible occurrence of resonant phenomena and their clinical relevance.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arfken, G. B. & Weber, H. J. 2001 Mathematical Methods for Physicists, 5th edn. IAP Harcourt Academic.Google Scholar
2. Bishop, P. N. 2000 Structural macromolecules and supramolecular organisation of the vitreous gel. Prog. Retinal Eye Res. 19 (3), 323344.CrossRefGoogle ScholarPubMed
3. Buchsbaum, G., Sternklar, M., Litt, M., Grunwald, J. E. & Riva, C. E. 1984 Dynamics of an oscillating viscoelastic sphere: a model of the vitreous humor of the eye. Biorheology 21, 285296.CrossRefGoogle Scholar
4. Dalton, P. D., Chirila, T. V., Hong, Y. & Jefferson, A. 1995 Oscillatory shear experiments as criteria for potential vitreous substitutes. Polym. Gels Networks 3 (4), 429444.CrossRefGoogle Scholar
5. David, T., Smye, S., Dabbs, T. & James, T. 1998 A model for the fluid motion of vitreous humour of the human eye during saccadic movement. Phys. Med. Biol. 43, 13851399.CrossRefGoogle Scholar
6. Dyson, R., Fitt, A. J., Jensen, O. E., Mottram, N., Miroshnychenko, D., Naire, S., Ocone, R., Siggers, J. H. & Smithbecker, A. 2004 Post re-attachment retinal re-detachment. In Proceedings of the Fourth Medical Study Group. University of Strathclyde, Glasgow.Google Scholar
7. Lee, B., Litt, M. & Buchsbaum, G. 1992 Rheology of the vitreous body. Part I. Viscoelasticity of human vitreous. Biorheology 29, 521533.CrossRefGoogle ScholarPubMed
8. Lee, B., Litt, M. & Buchsbaum, G. 1994 Rheology of the vitreous body. Part 2. Viscoelasticity of bovine and porcine vitreous. Biorheology 31 (4), 327338,.CrossRefGoogle ScholarPubMed
9. Leone, G., Consumi, M., Aggravi, M., Donati, A., Lamponi, S. & Magnani, A. 2010 PVA/STMP based hydrogels as potential substitutes of human vitreous. J. Mater. Sci.: Mater. Med. 21, 24912500.Google ScholarPubMed
10. Nickerson, C. S., Park, J., Kornfield, J. A. & Karageozian, H. 2008 Rheological properties of the vitreous and the role of hyaluronic acid. J. Biomech. 41 (9), 18401846.CrossRefGoogle ScholarPubMed
11. Quartapelle, L. & Verri, M. 1995 On the spectral solution of the three-dimensional Navier–Stokes equations in spherical and cylindrical regions. Comput. Phys. Commun. 90, 143.CrossRefGoogle Scholar
12. Repetto, R., Siggers, J. H. & Stocchino, A. 2008 Steady streaming within a periodically rotating sphere. J. Fluid Mech. 608 7180.CrossRefGoogle Scholar
13. Repetto, R., Siggers, J. H. & Stocchino, A. 2010 Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomech. Model. Mechanobiol. 9 (1), 6576.CrossRefGoogle ScholarPubMed
14. Repetto, R., Stocchino, A. & Cafferata, C. 2005 Experimental investigation of vitreous humour motion within a human eye model. Phys. Med. Biol. 50, 47294743.CrossRefGoogle ScholarPubMed
15. Scott, J. D. 2002 Future perspectives in primary retinal detachment repair. Eye 16 (4), 349352.CrossRefGoogle ScholarPubMed
16. Soman, N. & Banerjee, R. 2003 Artificial vitreous replacements. Biomed. Mater. Engng 13 (1), 5974.Google ScholarPubMed
17. Swindle, K., Hamilton, P. & Ravi, N. 2008 In situ formation of hydrogels as vitreous substitutes: viscoelastic comparison to porcine vitreous. J. Biomed. Mater. Res. A 87A (3), 656665.CrossRefGoogle Scholar
18. Swindle, K. E. & Ravi, N. 2007 Recent advances in polymeric vitreous substitutes. Exp. Rev. Ophthalmol. 2 (2), 255265.CrossRefGoogle Scholar
19. Swindle-Reilly, K. E., Shah, M., Hamilton, P. D., Eskin, T. A., Kaushal, S. & Ravi, N. 2009 Rabbit study of an in situ forming hydrogel vitreous substitute. Invest. Ophthalmol. Vis. Sci. 50 (10), 48404846.CrossRefGoogle Scholar
20. Tanner, R. I. 2000 Engineering Rheology, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
21. Walton, K. A., Meyer, C. H., Harkrider, C. J., Cox, T. A. & Toth, C. A. 2002 Age-related changes in vitreous mobility as measured by video B scan ultrasound. Exp. Eye Res. 74 (2), 173180.CrossRefGoogle ScholarPubMed
22. Zimmerman, R. L. 1980 In vivo measurements of the viscoelasticity of the human vitreous humor. Biophys. J. 29, 539544.CrossRefGoogle ScholarPubMed