Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T23:18:16.993Z Has data issue: false hasContentIssue false

Particle segregation within bidisperse turbidity current evolution

Published online by Cambridge University Press:  18 September 2023

Jiafeng Xie
Affiliation:
Ocean College, Zhejiang University, Zhoushan 316021, PR China State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China
Chenlin Zhu*
Affiliation:
Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, China Jiliang University, Hangzhou 310018, PR China
Peng Hu*
Affiliation:
Ocean College, Zhejiang University, Zhoushan 316021, PR China Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316021, PR China
Zhaosheng Yu
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China
Dingyi Pan
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China
*
Email addresses for correspondence: zhuclgary@foxmail.com, pengphu@zju.edu.cn
Email addresses for correspondence: zhuclgary@foxmail.com, pengphu@zju.edu.cn

Abstract

Multigrain/polydispersity has a significant impact on turbidity current (TC). Despite the fact that several researches have looked into this effect, the impact of the fluid–particle interactions is not fully understood. Motivated by this, we employ the Eulerian–Lagrangian computational fluid dynamics–discrete element method model to investigate the dynamics of the bidisperse lock-exchange TC. Results show that, because the coarse particles will settle faster and stop moving forward, the two phases of bidisperse transport and fine component transport can be distinguished in the evolution of the bidisperse TC. During the bidisperse transport stage, the upper interface of each component is primarily determined by their own settling and transport characteristics and does not strongly depend on the relative fine particle volume fraction $\phi _F$. Fine particles are primarily responsible for the vortical structures near the upper interface of the TC head, and the increase of $\phi _F$ promotes their streamwise development. In comparison, fragmented vortical coherent structures are closely related to the presence of coarse particles, which can be seen in the lower layers. Bidisperse segregation alters the collision process between dispersed phases, which differs from monodisperse TC. The collisions and segregation-induced flow establish interconnections between the two dispersed phases. In the latter stage, the transport of fine particles is inhibited by both the lift force and the contact force produced by the collision with the deposited materials. As $\phi _F$ rises, the negative contact force weakens, and its change is essentially balanced by the rise in negative lift force.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd El-Gawad, S., Cantelli, A., Pirmez, C., Minisini, D., Sylvester, Z. & Imran, J. 2012 Three-dimensional numerical simulation of turbidity currents in a submarine channel on the seafloor of the Niger Delta slope. J. Geophys. Res. Oceans 117 (C5), C05026.CrossRefGoogle Scholar
Afkhami, M, Hassanpour, A., Fairweather, M. & Njobuenwu, D.O. 2015 Fully coupled LES-DEM of particle interaction and agglomeration in a turbulent channel flow. Comput. Chem. Engng 78, 2438.CrossRefGoogle Scholar
Akiki, G., Jackson, T.L. & Balachandar, S. 2017 Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J. Fluid Mech. 813, 882928.CrossRefGoogle Scholar
Alexander, J.A.N., McLelland, S.J., Gray, T.E., Vincent, C.E., Leeder, M.R. & Ellett, S. 2008 Laboratory sustained turbidity currents form elongate ridges at channel mouths. Sedimentology 55 (4), 845868.CrossRefGoogle Scholar
Altinakar, M.S., Graf, W.H. & Hopfinger, E.J. 1996 Flow structure in turbidity currents. J. Hydraul. Res. 34 (5), 713718.CrossRefGoogle Scholar
Amy, L.A., Hogg, A.J., Peakall, J. & Talling, P.J. 2005 Abrupt transitions in gravity currents. J. Geophys. Res. Earth Surf. 110 (F3), F03001.CrossRefGoogle Scholar
Arai, K., Naruse, H., Miura, R., Kawamura, K., Hino, R., Ito, Y., Inazu, D., Yokokawa, M., Izumi, N., Murayama, M., et al. 2013 Tsunami-generated turbidity current of the 2011 Tohoku-Oki earthquake. Geology 41 (11), 11951198.CrossRefGoogle Scholar
Baas, J.H., McCaffrey, W.D., Haughton, P.D.W. & Choux, C. 2005 Coupling between suspended sediment distribution and turbulence structure in a laboratory turbidity current. J. Geophys. Res. Oceans 110 (C11), C11015.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2004 Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95123.CrossRefGoogle Scholar
Balachandar, S. 2009 A scaling analysis for point–particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35 (9), 801810.CrossRefGoogle Scholar
Bell, D., Kane, I.A., Pontén, A.S.M., Flint, S.S., Hodgson, D.M. & Barrett, B.J. 2018 Spatial variability in depositional reservoir quality of deep-water channel-fill and lobe deposits. Mar. Petrol. Geol. 98, 97115.CrossRefGoogle Scholar
Berzi, D., Jenkins, J.T. & Larcher, M. 2010 Debris flows: recent advances in experiments and modeling. Adv Geophys. 52, 103138.CrossRefGoogle Scholar
Biegert, E., Vowinckel, B., Ouillon, R. & Meiburg, E. 2017 High-resolution simulations of turbidity currents. Prog. Earth Planet. Sci. 4, 33.CrossRefGoogle Scholar
Bonnecaze, R.T., Huppert, H.E. & Lister, J.R. 1993 Particle-driven gravity currents. J. Fluid Mech. 250, 339369.CrossRefGoogle Scholar
Cantero, M.I., Lee, J.R., Balachandar, S. & Garcia, M.H. 2007 On the front velocity of gravity currents. J. Fluid Mech. 586, 139.CrossRefGoogle Scholar
Chauchat, J. 2018 A comprehensive two-phase flow model for unidirectional sheet-flows. J. Hydraul. Res. 56 (1), 1528.CrossRefGoogle Scholar
Chen, H., Xiao, Y.G., Liu, Y.L. & Shi, Y.S. 2017 Effect of young's modulus on DEM results regarding transverse mixing of particles within a rotating drum. Powder Technol. 318, 507517.CrossRefGoogle Scholar
Cundall, P.A. & Strack, O.D.L. 1979 A discrete numerical model for granular assemblies. geotechnique 29 (1), 4765.CrossRefGoogle Scholar
Delannay, R., Valance, A., Mangeney, A., Roche, O. & Richard, P. 2017 Granular and particle-laden flows: from laboratory experiments to field observations. J. Phys. D: Appl. Phys. 50 (5), 053001.CrossRefGoogle Scholar
Dellino, P., Mele, D., Sulpizio, R., La Volpe, L. & Braia, G. 2008 A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics. J. Geophys. Res.: Solid Earth 113 (B7), B07206.CrossRefGoogle Scholar
Dhariwal, R. & Bragg, A.D. 2018 Small-scale dynamics of settling, bidisperse particles in turbulence. J. Fluid Mech. 839, 594620.CrossRefGoogle Scholar
Di Felice, R. 1994 The voidage function for fluid-particle interaction systems. Intl J. Multiphase Flow 20 (1), 153159.CrossRefGoogle Scholar
Ellison, T.H. & Turner, J.S. 1959 Turbulent entrainment in stratified flows. J. Fluid Mech. 6 (3), 423448.CrossRefGoogle Scholar
Espath, L.F.R., Pinto, L.C., Laizet, S. & Silvestrini, J.H. 2014 Two-and three-dimensional direct numerical simulation of particle-laden gravity currents. Comput. Geosci. 63, 916.CrossRefGoogle Scholar
Espath, L.F.R., Pinto, L.C., Laizet, S. & Silvestrini, J.H. 2015 High-fidelity simulations of the lobe-and-cleft structures and the deposition map in particle-driven gravity currents. Phys. Fluids 27 (5), 056604.CrossRefGoogle Scholar
Ezz, H., Cantelli, A. & Imran, J. 2013 Experimental modeling of depositional turbidity currents in a sinuous submarine channel. Sedim. Geol. 290, 175187.CrossRefGoogle Scholar
Ezz, H. & Imran, J. 2014 Curvature-induced secondary flow in submarine channels. Environ. Fluid Mech. 14 (2), 343370.CrossRefGoogle Scholar
Farizan, A., Yaghoubi, S., Firoozabadi, B. & Afshin, H. 2019 Effect of an obstacle on the depositional behaviour of turbidity currents. J. Hydraul. Res. 57 (1), 7589.CrossRefGoogle Scholar
Felix, M., Sturton, S. & Peakall, J. 2005 Combined measurements of velocity and concentration in experimental turbidity currents. Sedim. Geol. 179 (1–2), 3147.CrossRefGoogle Scholar
Francisco, E.P., Espath, L.F.R. & Silvestrini, J.H. 2017 Direct numerical simulation of bi-disperse particle-laden gravity currents in the channel configuration. Appl. Math. Model. 49, 739752.CrossRefGoogle Scholar
Garcia, M. & Parker, G. 1993 Experiments on the entrainment of sediment into suspension by a dense bottom current. J. Geophys. Res. Oceans 98 (C3), 47934807.CrossRefGoogle Scholar
Gladstone, C., Phillips, J.C. & Sparks, R.S.J. 1998 Experiments on bidisperse, constant-volume gravity currents: propagation and sediment deposition. Sedimentology 45, 833843.CrossRefGoogle Scholar
Gladstone, C. & Woods, A.W. 2000 On the application of box models to particle-driven gravity currents. J. Fluid Mech. 416, 187195.CrossRefGoogle Scholar
Grabowski, W.W. & Wang, L.-P. 2013 Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. 45 (1), 293324.CrossRefGoogle Scholar
Gui, N., Yang, X., Tu, J. & Jiang, S. 2018 A fine LES-DEM coupled simulation of gas-large particle motion in spouted bed using a conservative virtual volume fraction method. Powder Technol. 330, 174189.CrossRefGoogle Scholar
He, Z., Zhao, L., Hu, P., Yu, C. & Lin, Y.-T. 2018 Investigations of dynamic behaviors of lock-exchange turbidity currents down a slope based on direct numerical simulation. Adv. Water Resour. 119, 164177.CrossRefGoogle Scholar
Hitomi, J., Nomura, S., Murai, Y., De Cesare, G., Tasaka, Y., Takeda, Y., Park, H.J. & Sakaguchi, H. 2021 Measurement of the inner structure of turbidity currents by ultrasound velocity profiling. Intl J. Multiphase Flow 136, 103540.CrossRefGoogle Scholar
Hu, P., Tao, J., Li, W. & He, Z. 2020 Layer-averaged numerical study on effect of Reynolds number on turbidity currents. J. Hydraul. Res. 58 (4), 628637.CrossRefGoogle Scholar
Huang, H., Imran, J. & Pirmez, C. 2007 Numerical modeling of poorly sorted depositional turbidity currents. J. Geophys. Res. Oceans 112 (C1), C01014.CrossRefGoogle Scholar
Huang, H., Imran, J. & Pirmez, C. 2008 Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms. ASCE J. Hydraul. Engng 134 (9), 11991209.CrossRefGoogle Scholar
Huang, H., Imran, J. & Pirmez, C. 2012 The depositional characteristics of turbidity currents in submarine sinuous channels. Mar. Geol. 329, 93102.CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research. Proceedings of the Summer Program 1988, pp. 193–208. Center for Turbulence Research.Google Scholar
Huppert, H.E. & Simpson, J.E. 1980 The slumping of gravity currents. J. Fluid Mech. 99 (4), 785799.CrossRefGoogle Scholar
Hussain, A., Haughton, P.D.W., Shannon, P.M., Turner, J.N., Pierce, C.S., Obradors-Latre, A., Barker, S.P. & Martinsen, O.J. 2020 High-resolution x-ray fluorescence profiling of hybrid event beds: implications for sediment gravity flow behaviour and deposit structure. Sedimentology 67 (6), 28502882.CrossRefGoogle Scholar
Ismail, H., Viparelli, E. & Imran, J. 2016 Confluence of density currents over an erodible bed. J. Geophys. Res. Earth Surf. 121 (7), 12511272.CrossRefGoogle Scholar
Jiang, T., Zhang, Y., Tang, S., Zhang, D., Zuo, Q., Lin, W., Wang, Y., Sun, H. & Wang, B. 2014 CFD simulation on the generation of turbidites in deepwater areas: a case study of turbidity current processes in Qiongdongnan Basin, northern South China Sea. Acta Oceanol. Sinica 33 (12), 127137.CrossRefGoogle Scholar
Kloss, C., Goniva, C., Hager, A., Amberger, S. & Pirker, S. 2012 Models, algorithms and validation for opensource DEM and CFD–DEM. Prog. Comput. Fluid Dyn. 12 (2–3), 140152.CrossRefGoogle Scholar
Kneller, B., Nasr-Azadani, M.M., Radhakrishnan, S. & Meiburg, E. 2016 Long-range sediment transport in the world's oceans by stably stratified turbidity currents. J. Geophys. Res. Oceans 121 (12), 86088620.CrossRefGoogle Scholar
Koohandaz, A., Khavasi, E., Eyvazian, A. & Yousefi, H. 2020 Prediction of particles deposition in a dilute quasi-steady gravity current by lagrangian markers: effect of shear-induced lift force. Sci. Rep. 10, 16673.CrossRefGoogle Scholar
Kubo, Y. 2004 Experimental and numerical study of topographic effects on deposition from two-dimensional, particle-driven density currents. Sedim. Geol. 164 (3–4), 311326.CrossRefGoogle Scholar
Kyrousi, F., Leonardi, A., Roman, F., Armenio, V., Zanello, F., Zordan, J., Juez, C. & Falcomer, L. 2018 Large eddy simulations of sediment entrainment induced by a lock-exchange gravity current. Adv. Water Resour. 114, 102118.CrossRefGoogle Scholar
Lee, C.-H. 2019 Multi-phase flow modeling of submarine landslides: transformation from hyperconcentrated flows into turbidity currents. Adv. Water Resour. 131, 103383.CrossRefGoogle Scholar
de Leeuw, J., Eggenhuisen, J.T. & Cartigny, M.J.B. 2018 Linking submarine channel–levee facies and architecture to flow structure of turbidity currents: insights from flume tank experiments. Sedimentology 65 (3), 931951.CrossRefGoogle Scholar
Li, Y., Xu, Y. & Thornton, C. 2005 A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles. Powder Technol. 160 (3), 219228.CrossRefGoogle Scholar
Liu, M. & Zhang, Z. 2019 Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Sci. China Phys. Mech. Astron. 62, 984701.CrossRefGoogle Scholar
Loth, E. & Dorgan, A.J. 2009 An equation of motion for particles of finite Reynolds number and size. Environ. Fluid Mech. 9 (2), 187206.CrossRefGoogle Scholar
McCaffrey, W.D., Choux, C.M., Baas, J.H. & Haughton, P.D.W. 2003 Spatio-temporal evolution of velocity structure, concentration and grain-size stratification within experimental particulate gravity currents. Mar. Petrol. Geol. 20 (6-8), 851860.CrossRefGoogle Scholar
McLaughlin, J.B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261274.CrossRefGoogle Scholar
Mei, R. 1992 An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Intl J. Multiphase Flow 18 (1), 145147.CrossRefGoogle Scholar
Meiburg, E. & Kneller, B. 2010 Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42, 135156.CrossRefGoogle Scholar
Meiburg, E., Radhakrishnan, S. & Nasr-Azadani, M. 2015 Modeling gravity and turbidity currents: computational approaches and challenges. Appl. Mech. Rev. 67 (4), 040802.CrossRefGoogle Scholar
Meng, W., Liao, L., Yu, C.-H., Li, J. & An, R. 2021 Eulerian–Eulerian multiphase models for simulating collapse of submarine sediment column with rheological characteristics in air–water flow. Phys. Fluids 33 (11), 113301.CrossRefGoogle Scholar
Middleton, G.V. 1993 Sediment deposition from turbidity currents. Annu. Rev. Earth Planet. Sci. 21, 89114.CrossRefGoogle Scholar
Nasr-Azadani, M.M. & Meiburg, E. 2014 Turbidity currents interacting with three-dimensional seafloor topography. J. Fluid Mech. 745, 409443.CrossRefGoogle Scholar
Nasr-Azadani, M.M., Meiburg, E. & Kneller, B. 2018 Mixing dynamics of turbidity currents interacting with complex seafloor topography. Environ. Fluid Mech. 18 (1), 201223.CrossRefGoogle Scholar
Necker, F., Härtel, C., Kleiser, L. & Meiburg, E. 2002 High-resolution simulations of particle-driven gravity currents. Intl J. Multiphase Flow 28 (2), 279300.CrossRefGoogle Scholar
Necker, F., Härtel, C., Kleiser, L. & Meiburg, E. 2005 Mixing and dissipation in particle-driven gravity currents. J. Fluid Mech. 545, 339372.CrossRefGoogle Scholar
Nourmohammadi, Z., Afshin, H. & Firoozabadi, B. 2011 Experimental observation of the flow structure of turbidity currents. J. Hydraul. Res. 49 (2), 168177.CrossRefGoogle Scholar
Ouillon, R., Meiburg, E. & Sutherland, B.R. 2019 Turbidity currents propagating down a slope into a stratified saline ambient fluid. Environ. Fluid Mech. 19 (5), 11431166.CrossRefGoogle Scholar
Pähtz, T. & Durán, O. 2020 Unification of aeolian and fluvial sediment transport rate from granular physics. Phys. Rev. Lett. 124 (16), 168001.CrossRefGoogle ScholarPubMed
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8 (10), 27332755.CrossRefGoogle Scholar
Pinet, P.R. 2006 Invitation to Oceanography. Jones & Bartlett Learning.Google Scholar
Pohl, F., Eggenhuisen, J.T., Cartigny, M.J.B., Tilston, M.C., de Leeuw, J. & Hermidas, N. 2020 The influence of a slope break on turbidite deposits: an experimental investigation. Mar. Geol. 424, 106160.CrossRefGoogle Scholar
Pohl, F., Eggenhuisen, J.T., Tilston, M. & Cartigny, M.J.B. 2019 New flow relaxation mechanism explains scour fields at the end of submarine channels. Nat. Commun. 10, 4425.CrossRefGoogle Scholar
Rashidi, M., Hetsroni, G. & Banerjee, S. 1990 Particle-turbulence interaction in a boundary layer. Intl J. Multiphase Flow 16 (6), 935949.CrossRefGoogle Scholar
Rottman, J.W. & Simpson, J.E. 1983 Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel. J. Fluid Mech. 135, 95110.CrossRefGoogle Scholar
Salaheldin, T.M., Imran, J., Chaudhry, M.H. & Reed, C. 2000 of fine-grained sediment in turbidity current flow dynamics and resulting deposits. Mar. Geol. 171 (1–4), 2138.CrossRefGoogle Scholar
Schmeeckle, M.W. 2014 Numerical simulation of turbulence and sediment transport of medium sand. J. Geophys. Res. Earth Surf. 119 (6), 12401262.CrossRefGoogle Scholar
Sequeiros, O.E., Mosquera, R. & Pedocchi, F. 2018 Internal structure of a self-accelerating turbidity current. J. Geophys. Res. Oceans 123 (9), 62606276.CrossRefGoogle Scholar
Sequeiros, O.E., Naruse, H., Endo, N., Garcia, M.H. & Parker, G. 2009 Experimental study on self-accelerating turbidity currents. J. Geophys. Res. Oceans 114 (C5), C05025.CrossRefGoogle Scholar
Shin, J.O., Dalziel, S.B. & Linden, P.F. 2004 Gravity currents produced by lock exchange. J. Fluid Mech. 521, 134.CrossRefGoogle Scholar
Shringarpure, M., Cantero, M.I. & Balachandar, S. 2012 Dynamics of complete turbulence suppression in turbidity currents driven by monodisperse suspensions of sediment. J. Fluid Mech. 712, 384417.CrossRefGoogle Scholar
Simpson, J.E. 1999 Gravity currents: in the environment and the laboratory. Cambridge University Press.Google Scholar
Soler, M., Colomer, J., Folkard, A. & Serra, T. 2020 Particle size segregation of turbidity current deposits in vegetated canopies. Sci. Total Environ. 703, 134784.CrossRefGoogle ScholarPubMed
Steenhauer, K., Tokyay, T. & Constantinescu, G. 2017 Dynamics and structure of planar gravity currents propagating down an inclined surface. Phys. Fluids 29 (3), 036604.CrossRefGoogle Scholar
Sulpizio, R., Dellino, P., Doronzo, D.M. & Sarocchi, D. 2014 Pyroclastic density currents: state of the art and perspectives. J. Volcanol. Geotherm. Res. 283, 3665.Google Scholar
Sun, R. & Xiao, H. 2016 CFD–DEM simulations of current-induced dune formation and morphological evolution. Adv. Water Resour. 92, 228239.CrossRefGoogle Scholar
Talling, P.J., Allin, J., Armitage, D.A., Arnott, R.W.C., Cartigny, M.J.B., Clare, M.A., Felletti, F., Covault, J.A., Girardclos, S., Hansen, E., et al. 2015 Key future directions for research on turbidity currents and their deposits. J. Sedim. Res. 85 (2), 153169.CrossRefGoogle Scholar
Xie, J., Hu, P., Pähtz, T., He, Z. & Cheng, N. 2022 Fluid-particle interaction regimes during the evolution of turbidity currents from a coupled LES/DEM model. Adv. Water Resour. 163, 104171.CrossRefGoogle Scholar
Xie, J., Hu, P., Zhu, C., Yu, Z. & Pähtz, T. 2023 Turbidity currents propagating down an inclined slope: particle auto-suspension. J. Fluid Mech. 954, A44.CrossRefGoogle Scholar
Xu, J.P., Noble, M.A. & Rosenfeld, L.K. 2004 In-situ measurements of velocity structure within turbidity currents. Geophys. Res. Lett. 31 (9), L09311.CrossRefGoogle Scholar
Xu, J.P., Sequeiros, O.E. & Noble, M.A. 2014 Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA. Deep Sea Res. (I) 89, 1134.CrossRefGoogle Scholar
Zgheib, N., Bonometti, T. & Balachandar, S. 2015 Direct numerical simulation of cylindrical particle-laden gravity currents. Comput. Fluids 123, 2331.CrossRefGoogle Scholar
Zhao, L., Andersson, H.I. & Gillissen, J.J.J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.CrossRefGoogle Scholar
Zhou, Z.Y., Kuang, S.B., Chu, K.W. & Yu, A.B. 2010 Discrete particle simulation of particle–fluid flow: model formulations and their applicability. J. Fluid Mech. 661, 482510.CrossRefGoogle Scholar
Zhu, C., Qian, L., Lin, Z. & Yu, Z. 2022 Turbulent channel flow of a binary mixture of neutrally buoyant ellipsoidal particles. Phys. Fluids 34 (5), 053609.CrossRefGoogle Scholar
Supplementary material: File

Xie et al. supplementary material

Xie et al. supplementary material

Download Xie et al. supplementary material(File)
File 555.4 KB