Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T06:32:31.289Z Has data issue: false hasContentIssue false

Pinch-off of non-axisymmetric vortex rings

Published online by Cambridge University Press:  10 January 2014

Clara O’Farrell*
Affiliation:
Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125, USA
John O. Dabiri
Affiliation:
Graduate Aeronautical Laboratories and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
*
Email address for correspondence: ofarrell@cds.caltech.edu

Abstract

The formation and pinch-off of non-axisymmetric vortex rings is considered experimentally. Vortex rings are generated using a non-circular piston–cylinder arrangement, and the resulting velocity fields are measured using digital particle image velocimetry. Three different nozzle geometries are considered: an elliptical nozzle with an aspect ratio of two, an elliptical nozzle with an aspect ratio of four and an oval nozzle constructed from tangent circular arcs. The formation of vortices from the three nozzles is analysed by means of the vorticity and circulation, as well as by investigation of the Lagrangian coherent structures in the flow. The results indicate that, in all three nozzles, the maximum circulation the vortex can attain is determined by the equivalent diameter of the nozzle: the diameter of a circular nozzle of identical cross-sectional area. In addition, the time at which the vortex rings pinch off is found to be constant along the nozzle contours, and independent of relative variations in the local curvature. A formation number for this class of vortex rings is defined based on the equivalent diameter of the nozzle, and the formation number for vortex rings of the three geometries considered is found to lie in the range of 3–4. The implications of the relative shape and local curvature independence of the formation number on the study and modelling of naturally occurring vortex rings such as those that appear in biological flows is discussed.

Type
Papers
Copyright
©2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikari, D. 2009 Some experimental studies on vortex ring formation and interaction. Master’s thesis, National University of Singapore, available online at http://scholarbank.nus.edu.sg/handle/10635/16569.Google Scholar
Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261304.Google Scholar
Afanasyev, Y. D. 2006 Formation of vortex dipoles. Phys. Fluids 18, 037103.Google Scholar
Ahuja, A., Manes, J. & Massey, K. 1990 An evaluation of various concepts of reducing jet noise. AIAA Paper 90-3982.Google Scholar
Arms, R. J. & Hama, F. R. 1965 Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys. Fluids 8 (4), 553559.Google Scholar
Auerbach, D. 1991 Stirring properties of vortex rings. Phys. Fluids A 3, 13511355.Google Scholar
Baird, M. H. I., Wairegi, T. & Loo, H. J. 1977 Velocity and momentum of vortex rings in relation to formation parameters. Can. J. Chem. Engng 55, 1926.Google Scholar
Bartol, I. K., Krueger, P. S., Stewart, W. J. & Thompson, J. T. 2009 Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers. J. Exp. Biol. 212, 15061518.Google Scholar
Bellhouse, B. J. 1972 Fluid mechanics of a model mitral valve and left ventricle. Cardiovasc. Res. 6, 199210.Google Scholar
Benjamin, T. B. 1976 The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics. In Applications of Methods of Functional Analysis to Problems in Mechanics (ed. Germain, P. & Nayroles, B.), pp. 828. Springer.Google Scholar
Colin, S. P. & Costello, J. H. 2002 Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae. J. Exp. Biol. 205, 427437.CrossRefGoogle ScholarPubMed
Dabiri, J. O., Colin, S. P., Katija, K. & Costello, J. H. 2010 A wake-based correlate of swimming performance and foraging behaviour in seven co-occurring jellyfish species. J. Exp. Biol. 213, 12171225.CrossRefGoogle ScholarPubMed
Dabiri, J. O. & Gharib, M. 2004a Delay of vortex ring pinch-off by an imposed bulk counerflow. Phys. Fluids 16 (L), 2830.CrossRefGoogle Scholar
Dabiri, J. O. & Gharib, M. 2004b Fluid entrainment by isolated vortex rings. J. Fluid Mech. 511, 311331.Google Scholar
Dabiri, J. O. & Gharib, M. 2005 The role of optimal vortex formation in biological fluid transport. Proc. R. Soc. B 272, 15571560.Google Scholar
Dhanak, M. R. & de Bernardinis, B. 1981 The evolution of an elliptic vortex ring. J. Fluid Mech. 109, 189216.Google Scholar
Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R. & Lehman, S. 2000 How animals move: an integrative view. Science 288 (5463), 100106.Google Scholar
Dickinson, M. H. & Götz, K. G. 1996 The wake dynamics and flight forces of the fruit fly Drosophila melanogaster. J. Exp. Biol. 199, 20852104.CrossRefGoogle ScholarPubMed
Didden, N. 1979 On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math. Phys. 30, 101116.Google Scholar
Domenichini, F. 2011 Three-dimensional impulsive vortex formation from slender orifices. J. Fluid Mech. 666, 506520.CrossRefGoogle Scholar
Domenichini, F., Pedrizzetti, G. & Baccani, B. 2005 Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539, 179198.CrossRefGoogle Scholar
Drucker, E. G. & Lauder, G. V. 1999 Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J. Exp. Biol. 202, 23932412.CrossRefGoogle ScholarPubMed
Du Toit, P. C. 2010 Transport and separatrices in time-dependent flows. PhD thesis, California Institute of Technology.Google Scholar
Fernandez, V. M., Zabusky, N. J. & Gryanik, V. M. 1995 Vortex intensification and collapse of the Lissajous-elliptic ring: single- and multi-filament Biot–Savart simulations and visiometrics. J. Fluid Mech. 299, 289331.CrossRefGoogle Scholar
Gan, L., Dawson, J. R. & Nickels, T. B. 2012 On the drag of turbulent vortex rings. J. Fluid Mech. 709, 85105.Google Scholar
Gharib, M., Rambod, E., Kheradvar, A., Sahn, D. J. & Dabiri, J. O. 2006 Optimal vortex formation as an index for cardiac health. Proc. Natl Acad. Sci. USA 103, 63056308.Google Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Gladfelter, W. G. 1973 A comparative analysis of the locomotory systems of medusoid Cnidaria. Helgol. Wiss. Meeresunters 25, 228272.Google Scholar
Glezer, A. & Coles, D. 1990 An experimental study of a turbulent vortex ring. J. Fluid Mech. 221, 243283.Google Scholar
Green, M. A, Rowley, C. W. & Haller, G. 2007 Detection of Lagrangian coherent structures in 3D turbulence. J. Fluid Mech. 572, 111120.Google Scholar
Green, M. A, Rowley, C. W. & Smits, A. J. 2010 Using hyperbolic Lagrangian coherent structures to investigate vortices in bio-inspired fluid flows. Chaos 20, 017510.Google Scholar
Grinstein, F. F. 1995 Self-induced vortex ring dynamics in subsonic rectangular jets. Phys. Fluids 7 (10), 25192521.Google Scholar
Grinstein, F. F. 2001 Vortex dynamics and entrainment in rectangular free jets. J. Fluid Mech. 437, 69101.CrossRefGoogle Scholar
Grinstein, F. F., Glauser, M. N. & George, W. K. 1995 Vorticity in jets. In Fluid Vortices (ed. Green, S. I.), Kluwer Academic.Google Scholar
Gutmark, E. J. & Grinstein, F. F. 1999 Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31, 239272.Google Scholar
Haller, G. 2000 Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10, 99.CrossRefGoogle ScholarPubMed
Haller, G. 2001a Distinguished material surfaces and coherent structures in three-dimensional flows. Physica D 149, 18511861.Google Scholar
Haller, G. 2001b Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids 13, 33653385.Google Scholar
Haller, G. 2002 Lagrangian coherent structures for approximate velocity data. Phys. Fluids 14 (6), 18511861.Google Scholar
Haller, G. & Poje, A. C. 1998 Finite time transport in aperiodic flows. Physica D 119, 352380.CrossRefGoogle Scholar
Haller, G. & Yuan, G. 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352370.Google Scholar
Ho, C.-M. & Gutmark, E. 1987 Vortex induction and mass entrainment in a small-aspect-ratio jet. J. Fluid Mech. 179, 383405.Google Scholar
Hsieh, S. T. & Lauder, G. V. 2004 Running on water: three-dimensional force generation by basilisk lizards. Proc. Natl Acad. Sci. USA 101 (48), 1678416788.Google Scholar
Husain, H. S. & Hussain, F. 1993 Elliptic jets. Part 3. Dynamics of preferred mode coherent structure. J. Fluid Mech. 248, 315361.Google Scholar
Hussain, F. & Husain, H. S. 1989 Elliptic jets. Part 1. Characteristics of unexcited and excited jets. J. Fluid Mech. 208, 257320.Google Scholar
Hussain, H. S. & Hussain, F. 1991 Elliptic jets. Part 2. Dynamics of coherent structures: pairing. J. Fluid Mech. 233, 439482.Google Scholar
Kambe, T. & Takao, T. 1971 Motion of distorted vortex rings. J. Phys. Soc. Japan 31 (2), 591599.Google Scholar
Kelvin, Lord 1880 Vortex statics. Phil. Mag. 10, 97109.Google Scholar
Kern, S. & Koumoutsakos, P. 2006 Simulations of optimized anguilliform swimming. J. Exp. Biol. 209, 48414857.Google Scholar
Kheradvar, A. & Gharib, M. 2007 Influence of ventricular pressure drop on mitral annulus dynamics through the process of vortex ring formation. Ann. Biomed. Engng 35 (12), 20502064.Google Scholar
Kim, D. & Gharib, M. 2011 Flexibility effects on vortex formation of translating plates. J. Fluid Mech. 677, 255271.CrossRefGoogle Scholar
Kimura, Y. 2006 Motion of an elliptic vortex ring and particle transport. In IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (ed. Borisov, A. V., Kozlov, V. V., Mamaev, I. S. & Sokolovskiy, M. A.), pp. 119124. Springer.Google Scholar
Kiya, M. & Ishii, H. 1991 Deformation and splitting of pseudo-elliptic vortex rings. In Advances in Turbulence 3 (ed. Johansson, A. V. & Alfredsson, P. H.), pp. 5260. Springer.CrossRefGoogle Scholar
Kiya, M., Toyoda, K., Ishii, H., Kitamura, M. & Ohe, T. 1992 Numerical simulation and flow-visualization experiments on deformation of pseudo-elliptic vortex rings. Fluid Dyn. Res. 10, 117131.Google Scholar
Kokshaysky, N. V. 1979 Tracing the wake of a flying bird. Nature 279, 146148.Google Scholar
Krueger, P. S., Dabiri, J. O. & Gharib, M. 2006 The formation number of vortex rings in uniform background coflow. J. Fluid Mech. 556, 147166.Google Scholar
Krueger, P. S. & Gharib, M. 2003 The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys. Fluids 15, 12711281.Google Scholar
Leonard, A. 1985 Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech. 17, 523559.Google Scholar
Linden, P. F. & Turner, J. S. 2004 ‘Optimal’ vortex rings and aquatic propulsion mechanisms. Proc. R. Soc. B 271, 647653.Google Scholar
Maxworthy, T. 1972 The structure and stability of vortex rings. J. Fluid Mech. 51 (1), 1532.CrossRefGoogle Scholar
Mohseni, K., Ran, H. & Colonius, T. 2000 Numerical experiments on vortex ring formation. J. Fluid Mech. 430, 267282.Google Scholar
O’Dor, R. K. 1988 The forces acting on swimming squid. J. Exp. Biol. 137, 421442.CrossRefGoogle Scholar
O’Farrell, C. & Dabiri, J. O. 2010 A Lagrangian approach to vortex pinch-off. Chaos 20, 017513.Google Scholar
Olcay, A. B. & Krueger, P. S. 2007 Measurements of ambient fluid entrainment during laminar vortex formation. Exp. Fluids 44, 235247.Google Scholar
Olcay, A. B. & Krueger, P. S. 2010 Momentum evolution of ejected and entrained fluid during laminar vortex ring formation. Theor. Comput. Fluid Dyn. 24, 465482.Google Scholar
Oshima, Y. 1972 Motion of vortex rings in water. J. Phys. Soc. Japan 32 (4), 11251131.Google Scholar
Oshima, Y., Izutsu, N., Oshima, K. & Hussain, A. K. M. F. 1988 Bifurcation of an elliptic vortex ring. Fluid Dyn. Res. 3, 133139.Google Scholar
Pawlak, G., Cruz, C. M., Bazan, C. M. & Hrdy, P. G. 2007 Experimental characterization of starting jet dynamics. Fluid Dyn. Res. 39, 711730.Google Scholar
Pedrizzetti, G. 2010 Vortex formation out of two-dimensional orifices. J. Fluid Mech. 655, 198216.CrossRefGoogle Scholar
Peng, J. & Dabiri, J. O. 2009 Transport of inertial particles by Lagrangian coherent structures: application to predator–prey interactions in jellyfish feeding. J. Fluid Mech. 623, 7584.Google Scholar
Pereira, F. & Gharib, M. 2002 Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Meas. Sci. Technol. 13, 683694.Google Scholar
Pereira, F., Heinrich, S., Graff, E. C. & Gharib, M. 2006 Two-frame 3D particle tracking. Meas. Sci. Technol. 17, 16801692.Google Scholar
Rayner, J. M. V. 1979 A vortex theory of animal flight. Part 2. The forward flight of birds. J. Fluid Mech. 91, 731763.Google Scholar
Reul, H., Talukder, N. & Muller, W. 1981 Fluid mechanics of the natural mitral valve. J. Biomech. 14, 361372.CrossRefGoogle ScholarPubMed
Rosenfeld, M., Rambod, E. & Gharib, M. 1998 Circulation and formation number of laminar vortex rings. J. Fluid Mech. 376, 297318.CrossRefGoogle Scholar
Ryu, K.-W. & Lee, D.-J. 1997 Sound radiation from elliptic vortex rings: evolution and interaction. J. Sound Vib. 200 (3), 281301.CrossRefGoogle Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Shadden, S. C., Dabiri, J. O. & Marsden, J. E. 2006 Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 18, 047105.Google Scholar
Shadden, S. C., Katija, K., Rosenfeld, M., Marsden, J. E. & Dabiri, J. O. 2007 Transport and stirring induced by vortex formation. J. Fluid Mech. 593, 315331.Google Scholar
Steen, T. & Steen, S. 1994 Filling of a model left ventricle studied by colour M mode Doppler. Cardiovas. Res. 28, 18211827.Google Scholar
Troolin, D. R. & Longmire, E. K. 2009 Volumetric velocity measurements of vortex rings from inclined exits. Exp. Fluids 48, 409420.Google Scholar
Viets, H. & Sforza, P. M. 1972 Dynamics of bilateraly symmetric vortex rings. Phys. Fluids 13 (2), 230240.Google Scholar
Weihs, D. 1977 Periodic jet propulsion of aquatic creatures. Fortschr. Zool. 24, 171175.Google Scholar
Wieting, D. W. & Stripling, T. E. 1984 Dynamics and fluid dynamics of the mitral valve. In Recent Progress in Mitral Valve Disease (ed. Duran, C., Angell, W. W., Johnson, A. D. & Oury, J. H.), pp. 1346. Butterworths.Google Scholar
Willert, C. E. & Gharib, M. 1991 Digital particle image velocimetry. Exp. Fluids 10, 181193.Google Scholar
Willert, C. E. & Gharib, M. 1992 Three-dimensional particle imaging with a single camera. Exp. Fluids 12, 353358.CrossRefGoogle Scholar
Zhao, W., Frankel, S. H. & Mongeau, L. G. 2000 Effects of trailing jet instability on vortex ring formation. Phys. Fluids 12, 589621.Google Scholar