Article contents
Polymer mixing in shear-driven turbulence
Published online by Cambridge University Press: 07 August 2007
Abstract
We investigate numerically the influence of polymer mixing on shear-driven turbulence. Of particular interest is the suppression of mixing that accompanies drag reduction with dilute polymer solutions. The simulations use the finite extensible nonlinear elastic model with the Peterlin closure (FENE-P) to describe the polymer stresses in the momentum equation, with polymer concentration allowed to vary in space and time. A thin slab of concentrated polymer was placed in an initially Newtonian homogeneous turbulent shear flow on a plane perpendicular to the mean velocity gradient, and allowed to mix in the gradient direction while actively altering the turbulence. The initially higher concentration of polymer near the centreplane suppressed production of turbulent kinetic energy and Reynolds stress in that region, while turbulence outside the polymer-rich region remained shear-dominated Newtonian turbulence. The rate of mixing in the shear direction was severely damped by the action of the polymer compared to a passive scalar in the corresponding Newtonian turbulent shear flow. This, in part, was a result of the same damping of vertical velocity fluctuations by the polymer that leads to the suppression of momentum flux. However, the cross-correlation between the polymer concentration and vertical velocity fluctuations was also suppressed, indicating that the explanation for the reduction in polymer mixing involves both the suppression of vertical velocity fluctuations and an alteration of turbulence structure by the polymer–turbulence interactions.
- Type
- Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2007
Footnotes
Present address: Clear Science Corp., 663 Owego Hill Rd., Harford, NY 13784-0233, USA
References
REFERENCES
- 10
- Cited by