Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T23:31:29.808Z Has data issue: false hasContentIssue false

Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows

Published online by Cambridge University Press:  11 April 2006

Hiroji Nakagawa
Affiliation:
Department of Civil Engineering, Kyoto University, Kyoto 606, Japan
Iehisa Nezu
Affiliation:
Department of Civil Engineering, Kyoto University, Kyoto 606, Japan

Abstract

In this paper we intend to predict the magnitude of the contribution to the Reynolds stress of bursting events: ‘ejections’, ‘sweeps’, ‘inward interactions’ and ‘outward interactions’. We shall do this by making use of the conditional probability distribution of the Reynolds stress − uv, which can be derived by applying the cumulant-discard method to the Gram-Charlier probability distribution of the two variables u and v. The Reynolds-stress fluctuations in openchannel flows over smooth and rough beds are measured by dual-sensor hot-film anemometers, whose signals are conditionally sampled and sorted into the four quadrants of the u, v plane by using a high-speed digital data processing system.

We shall verify that even the third-order conditional probability distribution of the Reynolds stress shows fairly good agreement with the experimental results and that the sequence of events in the bursting process, i.e. ejections, sweeps and interactions, is directly related to the turbulent energy budget in the form of turbulent diffusion. Also, we shall show that the roughness effect is marked in the area from the wall to the middle of the equilibrium region, and that sweeps appear to be more important than ejections as the roughness increases and as the distance from the wall decreases.

Type
Research Article
Copyright
© 1977 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. & Atkinson, J. D. 1973 J. Fluid Mech. 58, 581.
Bradshaw, P. 1971 An Introduction to Turbulence and its Measurement. Pergamon.
Bremhorst, K. & Walker, T. B. 1973 J. Fluid Mech. 61, 173.
Brodkey, R. S., Wallace, J. M. & Eckelmann, H. 1974 J. Fluid Mech. 63, 209.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech. 37, 1.
Eckelmann, H. 1974 J. Fluid Mech. 65, 439.
Frenkiel, F. N. & Klebanoff, P. S. 1967 Phys. Fluids, 10, 507.
Frenkiel, F. N. & Klebanoff, P. S. 1973 Phys. Fluids, 16, 725.
Grass, A. J. 1971 J. Fluid Mech. 50, 233.
Gupta, A. K. & Kaplan, R. E. 1972 Phys. Fluids, 15, 981.
Hino, M., Sawamoto, N. & Takasu, S. 1975 Proc. Japan Soc. Civil Engrs, no. 237, p. 75 (in Japanese).
Kampé De Fériet, J. 1966 David Taylor Model Basin Rep. no. 2013.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 J. Fluid Mech. 30, 741.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 J. Fluid Mech. 41, 283.
Laufer, J. 1954 N.A.C.A. Tech. Rep. TR-1174.
Lawn, C. J. 1971 J. Fluid Mech. 48, 477.
Lu, S. S. & Willmarth, W. W. 1973 J. Fluid Mech. 50, 481.
Mollo-Christensen, E. 1971 A.I.A.A. J. 9, 1217.
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics, vol. 1, p. 205. M.I.T. Press.
Nakagawa, H. & Nezu, I. 1974 Proc. Japan Soc. Civil Engrs, no. 231, p. 61.
Nakagawa, H., Nezu, I. & Ueda, H. 1975 Proc. Japan Soc. Civil Engrs, no. 241, p. 155.
Nychas, S. G., Hershey, H. O. & Brodkey, R. S. 1973 J. Fluid Mech, 61, 513.
Offen, G. R. & Kline, S. J. 1974 J. Fluid Mech. 62, 223.
Rotta, J. C. 1972 Turbulente Strömungen. Teubner.
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 J. Fluid Mech. 54, 39.
Willmarth, W. W. & Lu, S. S. 1972 J. Fluid Mech. 55, 65.
ZariČ, Z. 1972 Comptes Rendus, A 269, 513.