Hostname: page-component-54dcc4c588-wlffp Total loading time: 0 Render date: 2025-10-06T00:08:56.735Z Has data issue: false hasContentIssue false

Reactive experimental control of turbulent jets

Published online by Cambridge University Press:  18 September 2024

Diego B.S. Audiffred*
Affiliation:
Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900, Brazil
André V.G. Cavalieri
Affiliation:
Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900, Brazil
Igor A. Maia
Affiliation:
Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900, Brazil
Eduardo Martini
Affiliation:
Département Fluides, Thermique & Combustion, Institut Pprime, CNRS – Université de Poitiers – ISAE-ENSMA, 86360 Chasseneuil-du-Poitou, France
Peter Jordan
Affiliation:
Département Fluides, Thermique & Combustion, Institut Pprime, CNRS – Université de Poitiers – ISAE-ENSMA, 86360 Chasseneuil-du-Poitou, France
*
Email address for correspondence: lasierradiego@gmail.com

Abstract

We present an experimental study of reactive control of turbulent jets, in which we target axisymmetric coherent structures, known to play a key role in the generation of sound. We first consider a forced jet, in which coherent structures are amplified above background levels, facilitating their detection, estimation and control. We then consider the more challenging case of an unforced jet. The linear control targets coherent structures in the region just downstream of the nozzle exit plane, where linear models are known to be appropriate for description of the lowest-order azimuthal modes of the turbulence. The control law is constructed in frequency space, based on empirically determined transfer functions. And the Wiener–Hopf formalism is used to enforce causality and to provide an optimal controller, as opposed to the sub-optimal control laws provided by simpler wave-cancellation methods. Significant improvements are demonstrated in the control of both forced and unforced jets. In the former case, order-of-magnitude reductions are achieved; and in the latter, turbulence levels are reduced by up to 60 %. The results open new perspectives for the control of turbulent flow at high Reynolds number.

Information

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alkislar, M.B., Krothapalli, A. & Butler, G.W. 2007 The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. J. Fluid Mech. 578, 139169.10.1017/S0022112007005022CrossRefGoogle Scholar
Audiffred, D.B.S., Cavalieri, A.V., Jordan, P., Martini, E. & Maia, I. 2023 a Wiener–Hopf Approach Applied for the Control of Forced Turbulent Jets. American Institute of Aeronautics and Astronautics.Google Scholar
Audiffred, D.B.S., Cavalieri, A.V.G., Brito, P.P.C. & Martini, E. 2023 b Experimental control of Tollmien–Schlichting waves using the Wiener–Hopf formalism. Phys. Rev. Fluids 8, 073902.10.1103/PhysRevFluids.8.073902CrossRefGoogle Scholar
Belyaev, I.V., Bychkov, O.P., Zaitsev, M.Y., Kopiev, V.A., Kopiev, V.F., Ostrikov, N.N., Faranosov, G.A. & Chernyshev, S.A. 2018 Development of the strategy of active control of instability waves in unexcited turbulent jets. Fluid Dyn. 53 (3), 347360.10.1134/S0015462818030047CrossRefGoogle Scholar
Bendat, J.S. & Piersol, A.G. 2010 Random Data, 4th edn. Wiley Series in Probability and Statistics. Wiley-Blackwell.10.1002/9781118032428CrossRefGoogle Scholar
Borggaard, J., Gugercin, S. & Zietsman, L. 2016 Feedback stabilization of fluids using reduced-order models for control and compensator design. In 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 7579–7585. IEEE.10.1109/CDC.2016.7799440CrossRefGoogle Scholar
Brito, P.P.C., Morra, P., Cavalieri, A.V.G., Araújo, T.B., Henningson, D.S. & Hanifi, A. 2021 Experimental control of Tollmien–Schlichting waves using pressure sensors and plasma actuators. Exp. Fluids 62 (2).10.1007/s00348-020-03112-4CrossRefGoogle Scholar
Cabell, R.H., Kegerise, M.A., Cox, D.E. & Gibbs, G.P. 2006 Experimental feedback control of flow-induced cavity tones. AIAA J. 44 (8), 18071816.10.2514/1.19608CrossRefGoogle Scholar
Castelain, T., Sunyach, M., Juvé, D. & Béra, J.-C. 2008 Jet-noise reduction by impinging microjets: an acoustic investigation testing microjet parameters. AIAA J. 46 (5), 10811087.CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P., Colonius, T. & Gervais, Y. 2012 Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech. 704, 388420.10.1017/jfm.2012.247CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P. & Lesshafft, L. 2019 Wave-packet models for jet dynamics and sound radiation. Appl. Mech. Rev. 71 (2), 020802 .10.1115/1.4042736CrossRefGoogle Scholar
Cavalieri, A.V.G., Rodríguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.10.1017/jfm.2013.346CrossRefGoogle Scholar
Crow, S.C. & Champagne, F.H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48 (3), 547591.CrossRefGoogle Scholar
Daniele, V. & Lombardi, G. 2007 Fredholm factorization of Wiener–Hopf scalar and matrix kernels. Radio Sci. 42 (6), RS6S01.CrossRefGoogle Scholar
European Commission 2011 Flightpath 2050: Europe's vision for aviation: maintaining global leadership and serving society's needs. Publications Office.Google Scholar
Fabbiane, N., Bagheri, S. & Henningson, D.S. 2017 Energy efficiency and performance limitations of linear adaptive control for transition delay. J. Fluid Mech. 810, 6081.10.1017/jfm.2016.707CrossRefGoogle Scholar
Fabbiane, N., Semeraro, O., Bagheri, S. & Henningson, D.S. 2014 Adaptive and model-based control theory applied to convectively unstable flows. Appl. Mech. Rev. 66 (6), 060801.CrossRefGoogle Scholar
Fabbiane, N., Simon, B., Fischer, F., Grundmann, S., Bagheri, S. & Henningson, D.S. 2015 On the role of adaptivity for robust laminar flow control. J. Fluid Mech. 767, R1.10.1017/jfm.2015.45CrossRefGoogle Scholar
Faranosov, G., Bychkov, O.P., Kopiev, V., Kopiev, V.A., Moralev, I. & Kazansky, P. 2019 Plasma-based active closed-loop control of instability waves in unexcited turbulent jet. Part 1. Free jet. In 25th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.10.2514/6.2019-2557CrossRefGoogle Scholar
Gao, C., Zhang, W., Kou, J., Liu, Y. & Ye, Z. 2017 Active control of transonic buffet flow. J. Fluid Mech. 824, 312351.10.1017/jfm.2017.344CrossRefGoogle Scholar
Ghiglieri, J. & Ulbrich, S. 2014 Optimal flow control based on POD and MPC and an application to the cancellation of Tollmien–Schlichting waves. Optim. Meth. Softw. 29 (5), 10421074.CrossRefGoogle Scholar
Ginevsky, A.S., Vlasov, Y.V. & Karavosov, R.K. 2004 Reduction of turbulent engine noise. In Acoustic Control of Turbulent Jets, pp. 189208. Springer Berlin Heidelberg.10.1007/978-3-540-39914-8_8CrossRefGoogle Scholar
Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.10.1017/jfm.2011.401CrossRefGoogle Scholar
Hervé, A., Sipp, D., Schmid, P.J. & Samuelides, M. 2012 A physics-based approach to flow control using system identification. J. Fluid Mech. 702, 2658.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (22), 473537.CrossRefGoogle Scholar
Huff, D., Henderson, B., Berton, J. & Seidel, J. 2016 Perceived noise analysis for offset jets applied to commercial supersonic aircraft. In 54th AIAA Aerospace Sciences Meeting.CrossRefGoogle Scholar
Huff, D.L. 2007 Noise reduction technologies for turbofan engines. Tech. Rep.. National Aeronautics and Space Administration, Cleveland, OH.Google Scholar
Hunter, C., Presz, W. & Reynolds, G. 2002 Thrust augmentation with mixer/ejector systems. In 40th AIAA Aerospace Sciences Meeting & Exhibit. American Institute of Aeronautics and Astronautics.10.2514/6.2002-230CrossRefGoogle Scholar
Högberg, M., Bewley, T.R. & Henningson, D.S. 2003 Linear feedback control and estimation of transition in plane channel flow. J. Fluid Mech. 481, 149175.10.1017/S0022112003003823CrossRefGoogle Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45 (1), 173195.CrossRefGoogle Scholar
Joshi, S.S., Speyer, J.L. & Kim, J. 1997 A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow. J. Fluid Mech. 332, 157184.CrossRefGoogle Scholar
Juillet, F., McKeon, B. & Schmid, P.J. 2014 Experimental control of natural perturbations in channel flow. J. Fluid Mech. 752, 296309.10.1017/jfm.2014.317CrossRefGoogle Scholar
Juve, D., Sunyach, M. & Comte-Bellot, G. 1979 Filtered azimuthal correlations in the acoustic far field of a subsonic jet. AIAA J. 17 (1), 112113.10.2514/3.61076CrossRefGoogle Scholar
Juvet, P.J.D. 1987 Control of high Reynolds number round jets. Doctoral dissertation, Stanford University.Google Scholar
Karban, U., Martini, E. & Jordan, P. 2023 Modeling closed-loop control of installed jet noise using Ginzburg–Landau equation. Flow Turbul. Combust. 113, 721746.CrossRefGoogle Scholar
Knowles, K. & Saddington, A.J. 2006 A review of jet mixing enhancement for aircraft propulsion applications. Proc. Inst. Mech. Engrs G: J. Aerosp. Engng 220 (2), 103127.CrossRefGoogle Scholar
Kœnig, M., Sasaki, K., Cavalieri, A.V., Jordan, P. & Gervais, Y. 2016 Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms. J. Fluid Mech. 788, 358380.10.1017/jfm.2015.670CrossRefGoogle Scholar
Kopiev, V.F., et al. 2014 Instability wave control in turbulent jet by plasma actuators. J. Phys. D: Appl. Phys. 47 (50), 505201.CrossRefGoogle Scholar
Kopiev, V.F., Belyaev, I.V., Zaytsev, M.Y., Kopiev, V.A. & Faranosov, G.A. 2013 Acoustic control of instability waves in a turbulent jet. Acoust. Phys. 59 (1), 1626.CrossRefGoogle Scholar
Kopiev, V.F. & Faranosov, G.A. 2008 Control over the instability wave in terms of the two-dimensional model of a nozzle edge. Acoust. Phys. 54 (3), 319326.CrossRefGoogle Scholar
Kotsonis, M., Shukla, R. & Pröbsting, S. 2015 Control of natural Tollmien–Schlichting waves using dielectric barrier discharge plasma actuators. Intl J. Flow Control 7, 3754.10.1260/1756-8250.7.1-2.37CrossRefGoogle Scholar
Lajús, F.C., Sinha, A., Cavalieri, A.V.G., Deschamps, C.J. & Colonius, T. 2019 Spatial stability analysis of subsonic corrugated jets. J. Fluid Mech. 876, 766791.CrossRefGoogle Scholar
Lau, J., Fisher, M. & Fuchs, H. 1972 The intrinsic structure of turbulent jets. J. Sound Vib. 22 (4), 379406.10.1016/0022-460X(72)90451-8CrossRefGoogle Scholar
Laurendeau, E., Jordan, P., Bonnet, J., Delville, J., Parnaudeau, P. & Lamballais, E. 2008 Subsonic jet noise reduction by fluidic control: the interaction region and the global effect. Phys. Fluids 20 (10), 101519.CrossRefGoogle Scholar
Leylekian, L., Lebrun, M. & Lempereur, P. 2014 An overview of aircraft noise reduction technologies. Aerosp. Lab J. 7 (1).Google Scholar
Lighthill, M.J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A: Math. Phys. Sci. 211 (1107), 564587.Google Scholar
Maia, I.A., Jordan, P. & Cavalieri, A.V.G. 2022 Wave cancellation in jets with laminar and turbulent boundary layers: the effect of nonlinearity. Phys. Rev. Fluids 7, 033903.10.1103/PhysRevFluids.7.033903CrossRefGoogle Scholar
Maia, I.A., Jordan, P., Cavalieri, A.V.G., Martini, E., Sasaki, K. & Silvestre, F.J. 2021 Real-time reactive control of stochastic disturbances in forced turbulent jets. Phys. Rev. Fluids 6, 123901.CrossRefGoogle Scholar
Martinelli, F. 2009 Feedback control of turbulent wall flows. PhD thesis, Politecnico di Milano, Milão.Google Scholar
Martini, E., Jung, J., Cavalieri, A.V., Jordan, P. & Towne, A. 2022 Resolvent-based tools for optimal estimation and control via the Wiener–Hopf formalism. J. Fluid Mech. 937, A19.10.1017/jfm.2022.102CrossRefGoogle Scholar
Maury, R., Koenig, M., Cattafesta, L., Jordan, P. & Delville, J. 2012 Extremum-seeking control of jet noise. Intl J. Aeroacoust. 11 (3–4), 459473.10.1260/1475-472X.11.3-4.459CrossRefGoogle Scholar
Michalke, A. 1983 Some remarks on source coherence affecting jet noise. J. Sound Vib. 87 (1), 117.CrossRefGoogle Scholar
Mollo-Christensen, E. 1967 Jet noise and shear flow instability seen from an experimenter's viewpoint. J. Appl. Mech. 34 (1), 17.10.1115/1.3607624CrossRefGoogle Scholar
Moore, C.J. 1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80 (2), 321367.10.1017/S0022112077001700CrossRefGoogle Scholar
Morra, P., Sasaki, K., Hanifi, A., Cavalieri, A.V.G. & Henningson, D.S. 2020 A realizable data-driven approach to delay bypass transition with control theory. J. Fluid Mech. 883, A33.10.1017/jfm.2019.793CrossRefGoogle Scholar
Morris, P.J. & McLaughlin, D.K. 2019 Noise and noise reduction in supersonic jets. In Flinovia – Flow Induced Noise and Vibration Issues and Aspects II (ed. E. Ciappi, S. De Rosa, F. Franco, J.-L. Guyader, S.A. Hambric, R.C.K. Leung & A.D. Hanford), pp. 85–96. Springer International Publishing.CrossRefGoogle Scholar
Noble, B. 1958 Method Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations. International Series of Monographs in Pure and Applies Mathematicss, vol. 7. Pergamon Press.Google Scholar
Parezanović, V., et al. 2014 Mixing layer manipulation experiment: from open-loop forcing to closed-loop machine learning control. Flow Turbul. Combust. 94 (1), 155173.10.1007/s10494-014-9581-1CrossRefGoogle Scholar
Pouryoussefi, S.G., Mirzaei, M., Alinejad, F. & Pouryoussefi, S.M. 2016 Experimental investigation of separation bubble control on an iced airfoil using plasma actuator. Appl. Therm. Engng 100, 13341341.10.1016/j.applthermaleng.2016.02.133CrossRefGoogle Scholar
Saiyed, N., Bridges, J. & Mikkelsen, K. 2000 Acoustics and thrust of separate-flow exhaust nozzles with mixing devices for high-bypass-ratio engines. In 6th Aeroacoustics Conference and Exhibit, Lahaina. American Institute of Aeronautics and Astronautics.10.2514/6.2000-1961CrossRefGoogle Scholar
Samimy, M., Adamovich, I., Webb, B., Kastner, J., Hileman, J., Keshav, S. & Palm, P. 2004 Development and characterization of plasma actuators for high-speed jet control. Exp. Fluids 37 (4), 577588.10.1007/s00348-004-0854-7CrossRefGoogle Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305330.10.1017/S0022112007004867CrossRefGoogle Scholar
Samimy, M., Webb, N., Esfahani, A. & Leahy, R. 2023 Perturbation-based active flow control in overexpanded to underexpanded supersonic rectangular twin jets. J. Fluid Mech. 959, A13.10.1017/jfm.2023.139CrossRefGoogle Scholar
Sanfilippo, D. & Valle, A. 2013 Feedback systems: an analytical framework. Comput. Music J. 37 (2), 1227.10.1162/COMJ_a_00176CrossRefGoogle Scholar
Sasaki, K., Morra, P., Cavalieri, A.V.G., Hanifi, A. & Henningson, D.S. 2019 On the role of actuation for the control of streaky structures in boundary layers. arXiv:1902.04923CrossRefGoogle Scholar
Sasaki, K., Morra, P., Fabbiane, N., Cavalieri, A.V., Hanifi, A. & Henningson, D.S. 2018 On the wave-cancelling nature of boundary layer flow control. Theor. Comput. Fluid Dyn. 32 (5), 593616.CrossRefGoogle Scholar
Schmid, P.J. & Sipp, D. 2016 Linear control of oscillator and amplifier flows. Phys. Rev. Fluids 1, 040501.10.1103/PhysRevFluids.1.040501CrossRefGoogle Scholar
Seiner, J. & Krejsa, E. 1989 Supersonic jet noise and the high speed civil transport. In AIAA, ASME, SAE, and ASEE, 25th Joint Propulsion Conference. American Institute of Aeronautics and Astronautics.10.2514/6.1989-2358CrossRefGoogle Scholar
Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D.S. 2013 Transition delay in a boundary layer flow using active control. J. Fluid Mech. 731, 288311.10.1017/jfm.2013.299CrossRefGoogle Scholar
Shaqarin, T., Noack, B.R. & Morzyński, M. 2018 The need for prediction in feedback control of a mixing layer. Fluid Dyn. Res. 50 (6), 065514.10.1088/1873-7005/aae453CrossRefGoogle Scholar
Shaw, L. & Northcraft, S. 1999 Closed loop active control for cavity acoustics. In 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, Bellevue. American Institute of Aeronautics and Astronautics.Google Scholar
Sinha, A., Gudmundsson, K., Xia, H. & Colonius, T. 2016 Parabolized stability analysis of jets from serrated nozzles. J. Fluid Mech. 789, 3663.10.1017/jfm.2015.719CrossRefGoogle Scholar
Smith, L.L., Majamaki, A.J., Lam, I.T., Delabroy, O., Karagozian, A.R., Marble, F.E. & Smith, O.I. 1997 Mixing enhancement in a lobed injector. Phys. Fluids 9 (3), 667678.CrossRefGoogle Scholar
Tam, C., Golebiowski, M. & Seiner, J. 1996 On the two components of turbulent mixing noise from supersonic jets. In Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.10.2514/6.1996-1716CrossRefGoogle Scholar
Tam, C.K.W., Viswanathan, K., Ahuja, K.K. & Panda, J. 2008 The sources of jet noise: experimental evidence. J. Fluid Mech. 615, 253292.10.1017/S0022112008003704CrossRefGoogle Scholar
Tide, P.S. & Srinivasan, K. 2009 Novel chevron nozzle concepts for jet noise reduction. Proc. Inst. Mech. Engrs G: J. Aerosp. Engng 223 (1), 5167.10.1243/09544100JAERO347CrossRefGoogle Scholar
Wang, J. & Feng, L. 2018 Synthetic jet. In Flow Control Techniques and Applications. Cambridge Aerospace Series, pp. 168305. Cambridge University Press.10.1017/9781316676448.009CrossRefGoogle Scholar
Wei, M. & Freund, J.B. 2005 A noise-controlled free shear flow. J. Fluid Mech. 546 (1), 123.10.1017/S0022112005007093CrossRefGoogle Scholar
Wirt, L.S. 1966 Gas turbine exhaust noise and its attenuation. SAE Trans. 74, 762784.Google Scholar
Zaman, K. 2010 Subsonic jet noise reduction by microjets – a parametric study. Intl J. Aeroacoust. 9 (6), 705732.10.1260/1475-472X.9.6.705CrossRefGoogle Scholar
Zhou, Y., Du, C., Mi, J. & Wang, X.W. 2012 Turbulent round jet control using two steady minijets. AIAA J. 50 (3), 736740.10.2514/1.J050838CrossRefGoogle Scholar
Zhou, Y., Fan, D., Zhang, B., Li, R. & Noack, B.R. 2020 Artificial intelligence control of a turbulent jet. J. Fluid Mech. 897, A27.CrossRefGoogle Scholar
Zich, R. & Daniele, V. 2014 The Wiener–Hopf Method in Electromagnetics. Electromagnetic Waves Series. Institution of Engineering and Technology.Google Scholar
Zigunov, F., Sellappan, P. & Alvi, F.S. 2022 Reduction of noise in cold and hot supersonic jets using active flow control guided by a genetic algorithm. J. Fluid Mech. 952, A40.10.1017/jfm.2022.938CrossRefGoogle Scholar