Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T02:20:11.323Z Has data issue: false hasContentIssue false

Resonance dynamics in compressible cavity flows using time-resolved velocity and surface pressure fields

Published online by Cambridge University Press:  02 October 2017

Justin L. Wagner*
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
Steven J. Beresh
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
Katya M. Casper
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
Edward P. DeMauro
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
Srinivasan Arunajatesan
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
*
Email address for correspondence: jwagner@sandia.gov

Abstract

The resonance modes in Mach 0.94 turbulent flow over a cavity having a length-to-depth ratio of five were explored using time-resolved particle image velocimetry (TR-PIV) and time-resolved pressure sensitive paint (TR-PSP). Mode switching was quantified in the velocity field simultaneous with the pressure field. As the mode number increased from one through three, the resonance activity moved from a region downstream within the recirculation region to areas further upstream in the shear layer, an observation consistent with linear stability analysis. The second and third modes contained organized structures associated with shear layer vortices. Coherent structures occurring in the velocity field during modes two and three exhibited a clear modulation in size with streamwise distance. The streamwise periodicity was attributable to the interference of downstream-propagating vortical disturbances with upstream-travelling acoustic waves. The coherent structure oscillations were approximately $180^{\circ }$ out of phase with the modal surface pressure fluctuations, analogous to a standing wave. Modal propagation (or phase) velocities, based on cross-correlations of bandpass-filtered velocity fields were found for each mode. The phase velocities also showed streamwise periodicity and were greatest at regions of maximum constructive interference where coherent structures were the largest. Overall, the phase velocities increased with modal frequency, which coincided with the modal activity residing at higher portions of the cavity where the local mean flow velocity was elevated. Together, the TR-PIV and TR-PSP provide unique details not only on the distribution of modal activity throughout the cavity, but also new understanding of the resonance mechanism as observed in the velocity field.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

References

Basley, J., Pastur, L. R., Lusseyran, F., Faure, T. M. & Delprat, N. 2011 Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV. Exp. Fluids 50 (4), 905918.Google Scholar
Barone, M.2003 Receptivity of compressible mixing layers. PhD thesis, Department of Aeronautics and Astronautics, Stanford University, Stanford, USA.Google Scholar
Barone, M. & Arunajatesan, S. 2016 Pressure loadings in rectangular cavity with and without a captive store. J. Aircraft 53 (4), 982991.Google Scholar
Beresh, S. J., Kearney, S. P., Wagner, J. L., Guildenbecher, D. G., Henfling, J. F., Spillers, R. W., Pruett, B. O. M., Jiang, N., Slipchenko, M., Mance, J. et al. 2015a Pulse-burst PIV in a high-speed wind tunnel. Meas. Sci. Technol. 26 (9), 095305.Google Scholar
Beresh, S. J., Wagner, J. L., Pruett, B. O. M., Henfling, J. F. & Spillers, R. W. 2015b Supersonic flow over a finite-width rectangular cavity. AIAA J. 53 (2), 296310.Google Scholar
Beresh, S. J., Wagner, J. L., Pruett, B. O. M., Henfling, J. F. & Spillers, R. W. 2015c Width effects in transonic flow over a rectangular cavity. AIAA J. 53 (12), 38313834.CrossRefGoogle Scholar
Beresh, S. J., Wagner, J. L. & Casper, K. M. 2016 Compressibility effects in the shear layer over a rectangular cavity. J. Fluid Mech. 808 (12), 116152.Google Scholar
Beresh, S. J., Wagner, J. L., Casper, K. M., DeMauro, E. P., Henfling, J. F. & Spillers, R. W. 2017 Spatial distribution of resonance in the velocity field for transonic flow over a rectangular cavity. AIAA J. https://arc.aiaa.org/doi/10.2514/1.J056106.Google Scholar
Bian, S., Driscoll, J. F., Elbing, B. R. & Ceccio, S. L. 2011 Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity. Exp. Fluids 51 (1), 5163.Google Scholar
Brès, G. A. & Colonius, T. 2008 Three-dimensional instabilities in compressible flow over open cavities. J. Fluid Mech. 599, 309339.Google Scholar
Casper, K. M., Wagner, J. L., Beresh, S. J., Henfling, J. F., Spillers, R. W. & Pruett, B. O. M. 2015 Complex geometry effects on cavity resonance. AIAA J. 54 (1), 320330.Google Scholar
Casper, K. M., Wagner, J. L., Beresh, S. J., Spillers, R. W. & Henfling, J. F. 2017 Spatial distribution of pressure resonance in compressible cavity flow. J. Fluid Mech.; AIAA Paper 2017-1476.Google Scholar
Cattefesta, L. N., Song, Q., Williams, D. R., Rowley, C. W. & Alvi, F. S. 2008 Active control of flow-induced cavity oscillations. Prog. Aerosp. Sci. 44 (7), 479502.Google Scholar
Delprat, N. 2006 A simple spectral model for a complex amplitude modulation process? Phys. Fluids 18 (7), 309339.CrossRefGoogle Scholar
Flaherty, W., Reedy, M. T., Elliot, G. S., Austin, J. M., Schmit, R. F. & Crafton, J.2013 Investigation of cavity flow using fast-response pressure sensitive paint. AIAA Paper 2013-0678.Google Scholar
Garg, S. & Cattafesta, l. n. 2001 Quantitative Schlieren measurements of coherent structures in a cavity shear layer. Exp. Fluids 30 (2), 123134.Google Scholar
Gueniat, F., Pastur, l. & Lusseyran, F. R. 2014 Investigating mode competition and three-dimensional features from two-dimensional velocity fields in an open cavity flow by modal decompositions. Phys. Fluids 20 (10), 105101.Google Scholar
Haigermoser, C., Vesely, L., Novara, M. & Onorato, M. 2008 A time-resolved particle image velocimetry investigation of a cavity flow with a thick incoming turbulent boundary layer. Phys. Fluids 20 (10), 105101.Google Scholar
Hassan, M., Labraga, L. & Keirsbulck, L. 2007 Aero-acoustic oscillations inside large deep cavities. In 16th Australian Fluid Mechanics Conference (AFMC), pp. 421428. School of Engineering, The University of Queensland.Google Scholar
Heller, H. H. & Bliss, D. B.1975 The physical mechanism for flow-induced pressure fluctuations in cavities and concepts for their suppression. AIAA Paper 75-491.Google Scholar
Hussain, A. K. M. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.Google Scholar
Kegerise, M. A.1999 An experimental investigation of flow induced cavity oscillations. PhD thesis, Department of Mechanical Engineering, Syracuse University, New York, USA.Google Scholar
Kegerise, M. A., Spina, G. S. & Cattefesta, L. N. 2004 Mode-switching and nonlinear effects in compressible flow over a cavity. Phys. Fluids 16 (3), 678687.CrossRefGoogle Scholar
Knisely, C. & Rockwell, D. 1982 Self-sustained low-frequency components in an impinging shear layer. J. Fluid Mech. 116, 413432.CrossRefGoogle Scholar
Krishnamurty, K.1955 Acoustic radiation from two-dimensional rectangular cut-outs in aerodynamic surfaces. NACA TN 3487.Google Scholar
Larchevêque, L., Sagaut, P., Le, T. H. & Compte, P. 2004 Large-eddy simulation of compressible flow in a three-dimensional open cavity at high Reynolds number. J. Fluid Mech. 516, 265301.Google Scholar
Lee, B. H. K. 2010 Effect of captive stores on internal weapons bay floor pressure distributions. J. Aircraft 47 (2), 732735.Google Scholar
Lee, S. B., Seena, A. & Sung, H. J. 2010 Self-sustained oscillations of turbulent flow in an open cavity. J. Aircraft 47 (3), 820834.Google Scholar
Li, W., Nonomura, T. & Fujii, K. 2013 On the feedback mechanism in supersonic cavity flows. Phys. Fluids 25 (5), 056101.Google Scholar
Lin, J. C. & Rockwell, D. 2001 Organized oscillations in initially turbulent flow past a cavity. AIAA J. 39 (6), 11391151.Google Scholar
Liu, X. & Katz, J. 2013 Vortex-corner interactions in a cavity shear layer elucidated by time-resolved measurements of the pressure field. J. Fluid Mech. 728, 417457.Google Scholar
Murray, N. & Ukeiley, L. 2007 Modified quadratic stochastic estimation of resonating subsonic cavity flow. J. Turbul. 8 (53), 122.Google Scholar
Murray, N., Raspet, R. & Ukeiley, L. 2011 Contributions of turbulence to subsonic cavity flow wall pressures. Phys. Fluids 23 (1), 015104.Google Scholar
Murray, N., Sallstrom, E. & Ukeiley, L. 2009 Properties of subsonic open cavity flow fields. Phys. Fluids 21 (9), 095103.Google Scholar
Najm, H. N. & Ghoneim, A. F. 1991 Numerical simulation of the convective instability in a dump combustor. AIAA J. 29 (6), 911919.Google Scholar
Rockwell, D. & Knisely, C. 1978 The organized nature of flow impingement upon a corner. J. Fluid Mech. 93 (3), 413432.Google Scholar
Rockwell, D. & Naudascher, E. 1978 Review-self-sustaining oscillations of flow past cavities. Trans. ASME J. Fluids Engng 100 (2), 152165.Google Scholar
Rockwell, D. & naudascher, E. 1979 Self-sustaining oscillations of impinging free shear layers. Annu. Rev. Fluid Mech. 11 (1), 6794.Google Scholar
Rowley, C. W. & Williams, D. R. 2006 Dynamics and control of high-Reynolds-number flow over open cavities. Annu. Rev. Fluid Mech. 38 (1), 251276.Google Scholar
Rossiter, J. E.1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Report 3438.Google Scholar
Russell, D. R. 2006 Development of a time-domain, variable-period surface-wave magnitude measurement procedure for application at regional and teleseismic distances, part I: theory. Bull. Seismol. Soc. Am. 96 (2), 665677.Google Scholar
Sarohia, V. 1977 Experimental investigation of oscillations in flows over shallow cavities. AIAA J. 15 (7), 984991.Google Scholar
Samimy, M. & Lele, S. K. 1991 Motion of particles with inertia in a compressible free shear layer. Phys. Fluids 3 (8), 19151923.Google Scholar
Seena, A. & Sung, H. J. 2013 Spatiotemporal representation of the dynamic modes in turbulent cavity flows. Intl J. Heat Fluid Flow 4, 113.Google Scholar
Slipchenko, M. N., Miller, J. D., Roy, S., Gord, J. R., Danczyk, S. A. & Meyer, T. R. 2012 Quasi-continuous burst-mode laser for high-speed planar imaging. Opt. Lett. 37 (8), 13461348.Google Scholar
Slipchenko, M. N., Miller, J. D., Roy, S., Gord, J. R. & Meyer, T. R. 2014 All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging. Opt. Express 21 (1), 681689.CrossRefGoogle Scholar
Song, Q.2008 Closed-loop control of flow-induced cavity oscilllations. PhD thesis, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, USA.Google Scholar
Torrence, C. & Compo, G. P. 1998 A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79 (1), 6178.Google Scholar
Tracy, M. B. & Plentovich, E. B.1997 Cavity unsteady-pressure measurements at subsonic and transonic speeds. NASA Tech. Paper 3669.Google Scholar
Ukeiley, L., Sheehan, M., Coiffet, F., Alvi, F., Arunajatesan, S. & Jansen, B. 2008 Control of pressure loads in geometrically complex cavities. J. Aircraft 45 (3), 10141024.Google Scholar
de Vicente, J., Basley, J., Meseguer-garrido, F., Soria, J. & Theofilis, V. 2014a Three-dimensional instabilities over a rectangular open cavity: from linear stability analysis to experimentation. J. Fluid Mech. 748, 189220.CrossRefGoogle Scholar
de Vicente, J., Basley, J., Meseguer-garrido, F., Soria, J. & Theofilis, V. 2014b Three-dimensional instabilities over a rectangular open cavity: from linear stability analysis to experimentation. J. Fluid Mech. 748, 189220.Google Scholar
Wagner, J. L., Casper, K. M., Beresh, S. J., Henfling, J. F., Spillers, R. W. & Pruett, B. O. M. 2015a Mitigation of wind tunnel wall interactions in subsonic cavity flows. Exp. Fluids 56 (3), 59.Google Scholar
Wagner, J. L., Casper, K. M., Beresh, S. J., Hunter, P. S., Henfling, J. F., Spillers, R. W. & Pruett, B. O. M. 2015b Fluid–structure interactions in compressible cavity flows. Phys. Fluids 27 (6), 066102.Google Scholar
Wagner, J. L., Casper, K. M., Beresh, S. J., Hunter, P. S., Spillers, R. W. & Henfling, J. F. 2016 Response of a store with tunable natural frequencies in compressible cavity flow. AIAA J. 54 (8), 23512360.Google Scholar
Zhuang, N., Alvi, F. S., Alkislar, M. B. & Shih, C. 2006 Supersonic cavity flows and their control. AIAA J. 44 (9), 21182128.Google Scholar