No CrossRef data available.
Published online by Cambridge University Press: 09 January 2025
Granular column collapse is a simple but important problem to the granular material community, due to its links to dynamics of natural hazards, such as landslides and pyroclastic flows, and many industrial situations, as well as its potential of analysing transient and non-local rheology of granular flows. This article proposes a new dimensionless number to describe the run-out behaviour of granular columns on inclined planes based on both previous experimental data and dimensional analysis. With the assistance of the sphero-polyhedral discrete element method (DEM), we simulate inclined granular column collapses with different initial aspect ratios, particle contact properties and initial solid fractions on inclined planes with different inclination angles ($2.5^{\circ }\unicode{x2013}20.0^{\circ }$) to verify the proposed dimensional analysis. Detailed analyses are further provided for better understanding of the influence of different initial conditions and boundary conditions, and to help unify the description of the run-out scaling of systems with different inclination angles. This work determines the similarity and unity between granular column collapses on inclined planes and those on horizontal planes, and helps investigate the transient rheological behaviour of granular flows, which has direct relevance to various natural and engineering systems.