Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T02:57:12.707Z Has data issue: false hasContentIssue false

Segregation in dissolving binary-component sessile droplets

Published online by Cambridge University Press:  28 December 2016

Erik Dietrich
Affiliation:
Physics of Fluids, MESA+ Institute for Nanotechnology and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Maaike Rump
Affiliation:
Physics of Fluids, MESA+ Institute for Nanotechnology and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Pengyu Lv
Affiliation:
Physics of Fluids, MESA+ Institute for Nanotechnology and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
E. Stefan Kooij
Affiliation:
Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Harold J. W. Zandvliet*
Affiliation:
Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Detlef Lohse*
Affiliation:
Physics of Fluids, MESA+ Institute for Nanotechnology and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Max Planck Institute for Dynamics and Self-Organization, 37077 Goettingen, Germany
*
Email addresses for correspondence: h.j.w.zandvliet@utwente.nl, d.lohse@utwente.nl
Email addresses for correspondence: h.j.w.zandvliet@utwente.nl, d.lohse@utwente.nl

Abstract

The dissolution of a single droplet, containing a mixture of oils, in water is experimentally studied. The oils in the droplet varied in terms of their solubility in water and their hydrophobicity. We demonstrate that the polarity of the droplet constituents strongly influences the dissolution dynamics. A binary-component droplet, containing two polar components (one soluble the other insoluble) exhibits a retarded dissolution as compared to a droplet containing only the soluble component. We argue that in this case the mixture in the droplet can be assumed homogeneous, leading to a smaller effective contact area of the soluble liquid in the droplet with the bulk water, and thus delayed dissolution. On the other hand, it is shown that this is not the case when a polar, soluble component is mixed with an insoluble non-polar component, in which case segregation between the different liquids inside the droplet occurs, leading to Marangoni flows and superspreading of the droplet. The segregation is confirmed by volumetric measurements and by the use of a solvatochromic dye in combination with confocal microscopy, which clearly showed that during dissolution local concentration differences inside the droplet developed.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramzon, B. & Sirignano, W. A. 1989 Droplet vaporization model for spray combustion calculations. Intl J. Heat Mass Transfer 32, 16051618.CrossRefGoogle Scholar
Addison, C. C. & Hutchinson, S. K. 1949 The properties of freshly formed surfaces. part xi. factors influencing surface activity and adsorption rates in aqueous decyl alcohol solutions. J. Chem. Soc. 33873395.CrossRefGoogle Scholar
Aggarwal, S. K. & Peng, F. 1995 A review of droplet dynamics and vaporization modeling for engineering calculations. J. Engng Gas Turbines Power 117, 453461.CrossRefGoogle Scholar
van der Bos, A., van der Meulen, M.-J., Driessen, T., van den Berg, M., Reinten, H., Wijshoff, H., Versluis, M. & Lohse, D. 2014 Velocity profile inside piezoacoustic inkjet droplets in flight: comparison between experiment and numerical simulation. Phys. Rev. Appl. 1, 014004.CrossRefGoogle Scholar
Bourges-Monnier, C. & Shanahan, M. E. R. 1995 Influence of evaporation on contact angle. Langmuir 11 (7), 28202829.CrossRefGoogle Scholar
Brenn, G., Deviprasath, L. J., Durst, F. & Fink, C. 2007 Evaporation of acoustically levitated multi-component liquid droplets. Intl J. Heat Mass Transfer 50, 50735086.CrossRefGoogle Scholar
Burger, M., Schmehl, R., Prommersberger, K., Schäfer, O., Koch, R. & Wittig, S. 2003 Droplet evaporation modeling by the distillation curve model: accounting for kerosene fuel and elevated pressures. Intl J. Heat Mass Transfer 46, 44034412.CrossRefGoogle Scholar
Cazabat, A.-M. & Guena, G. 2010 Evaporation of macroscopic sessile droplets. Soft Matt. 6, 25912612.CrossRefGoogle Scholar
Chu, S. & Prosperetti, A. 2016 Dissolution and growth of a multicomponent drop in an immiscible liquid. J. Fluid Mech. 798, 787811.CrossRefGoogle Scholar
Crittenden, E. D. Jr. & Hixson, A. N. 1954 Extraction of hydrogen chloride from aqueous solutions. Ind. Engng Chem. 46, 265274.CrossRefGoogle Scholar
Dehaeck, S., Rednikov, A. & Colinet, P. 2014 Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets. Langmuir 30, 20022008.CrossRefGoogle ScholarPubMed
Demond, A. H. & Lindner, A. S. 1993 Estimation of interfacial tension between organic liquids and water. Environ. Sci. Technol. 27 (12), 23182331.CrossRefGoogle Scholar
Dietrich, E., Kooij, E. S., Zhang, X., Zandvliet, H. J. W. & Lohse, D. 2015 Stick-jump mode in surface droplet dissolution. Langmuir 31 (16), 46964703.CrossRefGoogle ScholarPubMed
Dietrich, E., Wildeman, S., Visser, C. W., Hofhuis, K., Kooij, E. S., Zandvliet, H. J. W. & Lohse, D. 2016 Role of natural convection in the dissolution of sessile droplets. J. Fluid Mech. 794, 4567.CrossRefGoogle Scholar
Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. & Sefiane, K. 2009 The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329351.CrossRefGoogle Scholar
Enríquez, O. R., Sun, C., Lohse, D., Prosperetti, A. & van der Meer, D. 2014 The quasi-static growth of CO2 bubbles. J. Fluid Mech. 741.CrossRefGoogle Scholar
Epstein, P. S. & Plesset, M. S. 1950 On the stability of gas bubbles in liquid–gas solutions. J. Chem. Phys. 18, 15051509.CrossRefGoogle Scholar
Erbil, H. Y. 2012 Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv. Colloid Interface Sci. 170, 6786.CrossRefGoogle ScholarPubMed
Gelderblom, H., Marín, Á. G., Nair, H., van Houselt, A., Lefferts, L., Snoeijer, J. H. & Lohse, D. 2011 How water droplets evaporate on a superhydrophobic substrate. Phys. Rev. E 83, 026306.Google ScholarPubMed
GSI Environmental2016 Gsi environmental chemical database. www.gsi-net.com/en/publications/gsi-chemical-database/single/152.html.Google Scholar
Guéna, G., Poulard, C. & Cazabat, A.-M. 2006 The leading edge of evaporating droplets. J. Colloid Interface Sci. 312, 164171.CrossRefGoogle Scholar
Hansch, C., Quinlan, J. E. & Lawrence, G. L. 1968 Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids. J. Org. Chem. 33 (1), 347350.CrossRefGoogle Scholar
Hao, L. & Leaist, D. G. 1996 Binary mutual diffusion coefficients of aqueous alcohols. Methanol to 1-heptanol. J. Chem. Engng Data 41 (2), 210213.CrossRefGoogle Scholar
Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., Muthukrishnan, V., Owen, G., Turner, S., Williams, M. et al. 2013 The chebi reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res.Google ScholarPubMed
Haynes, W. M. 2004 Handbook of Chemistry and Physics. CRC.Google Scholar
Hernández-Sánchez, J. F., Eddi, A. & Snoeijer, J. H. 2015 Marangoni spreading due to a localized alcohol supply on a thin water film. Phys. Fluids 27, 032003.CrossRefGoogle Scholar
Høiland, H. & Vikingstad, E. 1976 Partial molal volumes and additivity of group partial molal volumes of alcohols in aqueous solution at 25 °C and 35 °C. Acta Chem. Scand. A 30, 182186.CrossRefGoogle Scholar
Hu, H. & Larson, R. G. 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106 (6), 13341344.CrossRefGoogle Scholar
Kelly-Zion, P., Batra, J. & Pursell, C. J. 2013 Correlation for the convective and diffusive evaporation of a sessile drop. Engineering Faculty Research 5, 278285.Google Scholar
Kelly-Zion, P. L., Pursell, C. J., Booth, R. S. & Vantilburg, A. N. 2009 Evaporation rates of pure hydrocarbon liquids under the influences of natural convection and diffusion. Intl J. Heat Mass Transfer 52 (13–14), 33053313.CrossRefGoogle Scholar
Kinoshita, K., Ishikawa, H. & Shinoda, K. 1958 Solubility of alcohols in water determined by the surface tension measurements. Bull. Chem. Soc. Jpn. 31 (9), 10811082.CrossRefGoogle Scholar
Kneer, R., Schneider, M., Noll, B. & Wittig, S. 1993 Diffusion controlled evaporation of a multicomponent droplet: theoretical studies on the importance of variable liquid properties. Intl J. Heat Mass Transfer 36 (9), 24032415.CrossRefGoogle Scholar
Lehmann, S., Lorenz, S., Rivard, E. & Brüggemann, D. 2015 Experimental analysis and semicontinuous simulation of low temperature droplet evaporation of multicomponent fuels. Exp. Fluids 56, 1871.CrossRefGoogle Scholar
Lohse, D. 2016 Towards controlled liquid–liquid microextraction. J. Fluid Mech. 804, 14.CrossRefGoogle Scholar
Lohse, D. & Zhang, X. 2015 Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87, 9811035.CrossRefGoogle Scholar
Moffat, J. R., Sefiane, K. & Shanahan, M. E. R. 2009 Effect of TiO2 nanoparticles on contact line stick-slip behavior of volatile drops. J. Phys. Chem. B 113 (26), 88608866.CrossRefGoogle ScholarPubMed
Nguyen, T. A. H. & Nguyen, A. V. 2012 Increased evaporation kinetics of sessile droplets by using nanoparticles. Langmuir 28 (49), 1672516728.CrossRefGoogle ScholarPubMed
Nikolov, A. D., Wasan, D. T., Chengara, A., Koczo, K., Policello, G. A. & Kolossvary, I. 2002 Superspreading driven by Marangoni flow. Adv. Colloid Interface Sci. 96 (1), 325338.CrossRefGoogle ScholarPubMed
Picknett, R. G. & Bexon, R. 1977 The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61 (2), 336350.CrossRefGoogle Scholar
Popov, Y. O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313.Google ScholarPubMed
Sazhin, S. S., Elwardany, A., Prutitskii, P. A., Castanet, G., Lemoine, F., Sazhina, E. M. & Heikal, M. R. 2010 A simplified model for bi-component droplet heating and evaporation. Intl J. Heat Mass Transfer 53, 44954505.CrossRefGoogle Scholar
Shanahan, M. E. R. 1995 Simple theory of ‘stick-slip’ wetting hysteresis. Langmuir 11 (3), 10411043.CrossRefGoogle Scholar
Sobac, B. & Brutin, D. 2012 Thermal effects of the substrate on water droplet evaporation. Phys. Rev. E 86, 021602.CrossRefGoogle ScholarPubMed
Somasundaram, S., Anand, T. N. C. & Bakshi, S. 2015 Evaporation-induced flow around a pendant droplet and its influence on evaporation. Phys. Fluids 27, 112105.CrossRefGoogle Scholar
Stauber, J. M., Wilson, S. K., Duffy, B. R. & Sefiane, K. 2014 On the lifetimes of evaporating droplets. J. Fluid Mech. 744, R2.CrossRefGoogle Scholar
Stauber, J. M., Wilson, S. K. & Duffy, B. R. 2015a Evaporation of droplets on strongly hydrophobic substrates. Langmuir 31 (12), 36533660.CrossRefGoogle ScholarPubMed
Stauber, J. M., Wilson, S. K., Duffy, B. R. & Sefiane, K. 2015b On the lifetimes of evaporating droplets with related initial and receding contact angles. Phys. Fluids 27, 122101.CrossRefGoogle Scholar
Stenutz, R.2015 Structure and physical data for decanol. Tables for Chemical Species. http://www.stenutz.eu/chem/solv6.php?name=decanol.Google Scholar
Su, J. T. & Needham, D. 2013 Mass transfer in the dissolution of a multicomponent liquid droplet in an immiscible liquid environment. Langmuir 29 (44), 1333913345.CrossRefGoogle Scholar
Talbot, E. L., Berson, A., Brown, P. S. & Bain, C. D. 2012 Evaporation of picoliter droplets on surfaces with a range of wettabilities and thermal conductivities. Phys. Rev. E 85, 061604.Google ScholarPubMed
Tamim, J. & Hallett, W. L. H. 1995 A continuous thermodynamic model for multicomponent droplet vaporization. Chem. Engng Sci. 50, 29332942.CrossRefGoogle Scholar
Tan, H., Diddens, C., Lv, P., Kuerten, J. G. M., Zhang, X. & Lohse, D. 2016 Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating ouzo drop. Proc. Natl Acad. Sci. USA 113, 86428647.CrossRefGoogle ScholarPubMed
Tonini, S. & Cossali, G. E. 2015 A novel formulation of multi-component drop evaporation models for spray applications. Intl J. Therm. Sci. 89, 245253.CrossRefGoogle Scholar
Tonini, S. & Cossali, G. C. 2016 A multi-component drop evaporation model based on analytical solution of stefan-maxwell equations. Intl J. Heat Mass Transfer 92, 184189.CrossRefGoogle Scholar
Tsoumpas, Y., Dehaeck, S., Rednikov, A. & Colinet, P. 2015 Effect of marangoni flows on the shape of thin sessile droplets evaporating into air. Langmuir 31 (49), 1333413340.CrossRefGoogle ScholarPubMed
Verhoeckx, G. J., De Bruyn, P. L. & Overbeek, J. Th. G. 1987 On understanding microemulsions. J. Colloid Interface Sci. 119, 409421.CrossRefGoogle Scholar
Yaws, C. L. 2014 Thermophysical Properties of Chemicals and Hydrocarbons. Elsevier/Gulf Professional Publishing.Google Scholar
Zhang, L. & Kong, S.-C. 2012 Multicomponent vaporization modeling of bio-oil and its mixtures with other fuels. Fuel 95, 471480.CrossRefGoogle Scholar
Zhang, X., Wang, J., Bao, L., Dietrich, E., van der Veen, R. C. A., Peng, S., Friend, J., Zandvliet, H. J. W., Yeo, L. & Lohse, D. 2015 Mixed mode of dissolving immersed nanodroplets at a solid-water interface. Soft Matt. 11, 18891900.CrossRefGoogle Scholar