Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T14:02:09.825Z Has data issue: false hasContentIssue false

Self-excited oscillations in the wake of two-dimensional bluff bodies and their control

Published online by Cambridge University Press:  26 April 2006

Michael Schumm
Affiliation:
Hermann Foettinger Institut for Fluid- and Thermodynamics, Technical University Berlin, D-10623 Berlin, Germany
Eberhard Berger
Affiliation:
Hermann Foettinger Institut for Fluid- and Thermodynamics, Technical University Berlin, D-10623 Berlin, Germany
Peter A. Monkewitz
Affiliation:
Department of Mechanical Engineering, Swiss Federal Institute of Technology, CH-1005 Lausanne, Switzerland

Abstract

The onset of Kármán-vortex shedding is studied experimentally in the wake of different two-dimensional bluff bodies, namely an oblong cylinder, circular cylinders and plates of rectangular cross-section. Different control measures, such as wake heating, transverse body oscillations and base bleed are investigated. As the steady-periodic Kármán shedding has previously been identified as a limit-cycle, i.e. as self-excited oscillations, the experiments are interpreted in the framework of the Stuart–Landau model. The coefficients of the Stuart–Landau equation for the characteristic vortex shedding amplitude, i.e. the linear temporal growth rate, linear frequency and the Landau constant, are fully determined for the two cylinders and in part for the plate. For this purpose transients are generated by suddenly switching transverse body oscillations or base bleed on or off. The analysis of these transients by a refined method based on complex demodulation provides reliable estimates of the model coefficients and yields an experimental validation of the concept that a global instability mode grows or decays as a whole. Also, it is demonstrated that the coefficients of the Stuart–Landau equation are independent of the experimental technique used to produce the transients.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarède, P. & Monkewitz, P. A. 1992 A model for the formation of oblique shedding and ‘chevron’ patterns in cylinder wakes. Phys. Fluids A 4, 744756.Google Scholar
Bearman, P. W. 1967 The effect of base bleed on the flow behind a two-dimensional model with a blunt trailing edge. Aero. Q. 18, 207224.Google Scholar
Berger, E. 1964 Unterdrueckung der laminaren Wirbelstroemung und des Turbulenzeinsatzes der Kármán'schen Wirbelstrasse im Nachlauf eines schwingenden Zylinders. Jahrbuch der WGLR (ed. H. Blenk), pp. 164172. Friedr. Vieweg, Braunschweig.
Berger, E. 1967 Suppression of vortex shedding and turbulence behind oscillating cylinders. Phys. Fluids 10 (Suppl.), S191S193.Google Scholar
Berger, E. & Wille, R. 1972 Periodic flow phenomena. Ann. Rev. Fluid Mech. 4, 313340.Google Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.
Chomaz, J. M., Huerre, P. & Redekopp, L. G. 1988 Bifurcations to local and global modes in spatially-developing flows. Phys. Rev. Lett. 60, 2528.Google Scholar
Chomaz, J. M., Huerre, P. & Redekopp, L. G. 1991 A frequency selection criterion in spatially developing flows. Stud. Appl. Maths 84, 119144.Google Scholar
Cimbala, J. M., Nagib, H. M. & Roshko, A. 1988 Large structure in the far wakes of two-dimensional bluff bodies. J. Fluid Mech. 190, 265298.Google Scholar
Eisenlohr, H. & Eckelmann, H. 1989 Vortex splitting and its consequences in the vortex wake of cylinders at low Reynolds number. Phys. Fluids A 1, 189192.Google Scholar
Ffowcs Williams, J. E. & Zhao, B. C. 1989 The active control of vortex shedding. J. Fluids Struct. 3, 115122.Google Scholar
Gerich, D. & Eckelmann, H. 1982 Influence of end plates and free ends on the shedding frequency of circular cylinders. J. Fluid Mech. 122, 109121.Google Scholar
Hammache, M. & Gharib, M. 1991 An experimental study of the parallel and oblique vortex shedding from circular cylinders. J. Fluid Mech. 232, 567590.Google Scholar
Hannemann, K., Lynn, T. B. & Strykowski, P. J. 1986 Experimental investigation of the wake behind a flat plate with and without the influence of base bleed. Intl Rep. IB-221-86-A-26, DFVLR Goettingen.
Hannemann, K. & Oertel, H. 1989 Numerical simulation of the absolutely and convectively unstable wake. J. Fluid Mech. 199, 5588.Google Scholar
Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 22, 473537.Google Scholar
Hunt, R. E. & Crighton, D. G. 1991 Instability of flows in spatially developing media. Proc. R. Soc. Lond. A 435, 109128.Google Scholar
Karniadakis, G. E. & Triantafyllou, G. S. 1989 Frequency selection and asymptotic states in laminar wakes. J. Fluid Mech. 199, 441469.Google Scholar
Koch, W. 1985 Local instability characteristics and frequency determination of self-excited wake flows. J. Sound Vib. 99, 5383.Google Scholar
Lecordier, J. C., Hamma, L. & Paranthoen, P. 1991 The control of vortex shedding behind heated cylinders at low Reynolds numbers. Exps Fluids 10, 224229.Google Scholar
LeDizès, S., Monkewitz, P. A. & Huerre, P. 1993 Weakly nonlinear analysis of spatially developing shear flows. In Bluff-Body Wakes, Dynamics and Instabilities (ed. H. Eckelmann, J. M. R. Graham, P. Huerre & P. A. Monkewitz), pp. 148152. Springer.
LeDizès, S., Huerre, P., Chomaz, J.-M. & Monkewitz, P. A. 1994 Linear global modes in spatially-developing media. Phil. Trans. R. Soc. Lond. Submitted.Google Scholar
Mathis, C., Provansal, M. & Boyer, L. 1984 The Bénard–von Kármán instability: an experimental study near the threshold. J. Phys. Lett. Paris 45, L483L491.Google Scholar
Monkewitz, P. A. 1988 The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids 31, 9991006.Google Scholar
Monkewitz, P. A. 1989 Feedback control of global oscillations in fluid systems. AIAA Paper 89-0991.
Monkewitz, P. A. 1993 Wake control. In Bluff-Body Wakes, Dynamics and Instabilities (ed. H. Eckelmann, J. M. R. Graham, P. Huerre & P. A. Monkewitz), pp. 227240. Springer.
Monkewitz, P. A., Berger, E. & Schumm, M. 1991 The nonlinear stability of spatially inhomogeneous shear flows, including the effect of feedback. Eur. J. Mech. B/ Fluids 10(2) Suppl. 295300.Google Scholar
Monkewitz, P. A., Huerre, P. & Chomaz, J. M. 1993 Global linear stability analysis of weakly nonparallel shear flows. J. Fluid Mech. 251, 120.Google Scholar
Monkewitz, P. A. & Nguyen, L. N. 1987 Absolute instability in the near wake of two-dimensional bluff bodies. J. Fluids Struct. 1, 165184.Google Scholar
Mori, Y., Hijikata, K. & Nobuhara, T. 1986 A fundamental study of symmetrical vortex generation behind a cylinder by wake heating or by splitter plate or mesh. Intl J. Heat Mass Transfer 29, 11931201.Google Scholar
Morzyński, M. & Thiele, F. 1993 Numerical investigation of wake instabilities. In Bluff-Body Wakes, Dynamics and Instabilities (ed. H. Eckelmann, J. M. R. Graham, P. Huerre & P. A. Monkewitz), pp. 135142. Springer.
Nishioka, M. & Sato, H. 1978 Mechanism of determination of the shedding frequency of vortices behind a cylinder at low Reynolds number. J. Fluid Mech. 89, 4960.Google Scholar
Noack, B. R. 1992 Theoretische Untersuchung der Zylinderumstroemung mit einem niedrigdimensionalen Galerkin-Verfahren. Rep. 25/1992, Max-Planck-Institut fuer Stroemungsforschung, Goettingen.
Noack, B. R. & Eckelmann, H. 1994 A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297330.Google Scholar
Noto, K., Ishida, H. & Matsumoto, R. 1985 A breakdown of the Kármán vortex street due to the natural convection. In Flow Visualization III (ed. W. J. Yang), pp. 348352. Hemisphere.
Ohle, F. & Eckelmann, H. 1992 Modeling of a Kármán vortex street at low Reynolds numbers. Phys. Fluids A 4, 17071714.Google Scholar
Pierrehumbert, R. T. 1984 Local and global baroclinic instability of zonally varying flows. J. Atmos. Sci. 41, 21412162.Google Scholar
Prandtl, L. & Tietjens, O. 1929 Hydro- und Aeromechanik. Springer.
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.Google Scholar
Raghu, S. & Monkewitz, P. A. 1991 The bifurcation of a hot round jet to limit-cycle oscillations. Phys. Fluids A 3, 501503.Google Scholar
Ramberg, S. E. 1983 The effect of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders. J. Fluid Mech. 128, 81107.Google Scholar
Roshko, A. 1954a On the development of turbulent wakes from vortex streets. NACA Rep. 1191.
Roshko, A. 1954b On the drag and shedding frequency of two-dimensional bluff bodies. NACA TN 3169.
Roussopoulos, K. 1993a Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248, 267296.Google Scholar
Roussopoulos, K. 1993b Aspects of bluff body wake control. In Bluff-Body Wakes, Dynamics and Instabilities (ed. H. Eckelmann, J. M. R. Graham, P. Huerre & P. A. Monkewitz), pp. 249252. Springer.
Schumm, M. 1991 Experimentelle Untersuchungen zum Problem der absoluten und konvektiven Instabilitaet im Nachlauf zweidimensionaler stumpfer Koerper. PhD thesis D83-FB 09 Technical University Berlin. Published in VDI – Fortschrittsberichte Reihe 7, no. 196. Duesseldorf: VDI. Partial results have been published in 1988 by Berger E. & Schumm M. Untersuchung der Instabilitaetsmechanismen in Nachlauf von Zylindern. DFG Contractors Report Be 343/ 18–1.
Soward, A. M. 1992 Thin disc kinematic αω-dynamo models II. Short length scale modes. Geophys. Astrophys. Fluid Dyn. 64, 201225.Google Scholar
Sreenivasan, K. R., Raghu, S. & Kyle, D. 1989 Absolute instability in variable density round jets. Exps Fluids 7, 309317.Google Scholar
Sreenivasan, K. R., Strykowski, P. J. & Olinger, D. J. 1986 Hopf bifurcation, Landau equation and vortex shedding behind circular cylinders. In Proc. Forum on Unsteady Flow Separation (ed. K. N. Ghia), pp. 113. ASME.
Strykowski, P. J. & Sreenivasan, K. R. 1990 On the formation and suppression of vortex shedding at low Reynolds number. J. Fluid Mech. 218, 71107.Google Scholar
Stuart, J. T. 1971 Nonlinear stability theory. Ann. Rev. Fluid Mech. 3, 347370.Google Scholar
Tokumaru, P. T. & Dimotakis, P. E. 1991 Rotary oscillatory control of a cylinder wake. J. Fluid Mech. 224, 7790.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S. & Chryssostomidis, C. 1986 On the formation of vortex streets behind stationary cylinders. J. Fluid Mech. 170, 461477.Google Scholar
Tritton, D. J. 1959 Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 6, 547567.Google Scholar
Wehrmann, O. H 1965 Reduction of velocity fluctuations in a Kármán vortex street by a vibrating cylinder. Phys. Fluids 8, 760761.Google Scholar
Williams, D. R., Mansy, H. & Amato, C. W. 1992 The response and symmetry properties of a cylinder wake subjected to localized surface excitation. J. Fluid Mech. 234, 7196.Google Scholar
Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.Google Scholar
Williamson, C. H. K. 1994 The transition to three-dimensionality in the wake of cylinders. J. Fluid Mech. (submitted).Google Scholar
Wood, C. J. 1964 The effect of base bleed on a periodic wake. J. R. Aeronaut. Soc. 68, 477482.Google Scholar
Wood, C. J. 1967 Visualization of an incompressible wake with base bleed. J. Fluid Mech. 29, 259272.Google Scholar
Yu, M. H. & Monkewitz, P. A. 1990 The effect of nonuniform density on the absolute instability of two-dimensional inertial jets and wakes. Phys. Fluids A 3, 11751181.Google Scholar