Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T07:42:22.080Z Has data issue: false hasContentIssue false

Shear-driven circulation patterns in lipid membrane vesicles

Published online by Cambridge University Press:  16 April 2012

Francis G. Woodhouse
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
Raymond E. Goldstein*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
*
Email address for correspondence: R.E.Goldstein@damtp.cam.ac.uk

Abstract

Recent experiments have shown that when a near-hemispherical lipid vesicle attached to a solid surface is subjected to a simple shear flow it exhibits a pattern of membrane circulation much like a dipole vortex. This is in marked contrast to the toroidal circulation that would occur in the related problem of a drop of immiscible fluid attached to a surface and subjected to shear. This profound difference in flow patterns arises from the lateral incompressibility of the membrane, which restricts the observable flows to those in which the velocity field in the membrane is two-dimensionally divergence free. Here we study these circulation patterns within the simplest model of membrane fluid dynamics. A systematic expansion of the flow field based on Papkovich–Neuber potentials is developed for general viscosity ratios between the membrane and the surrounding fluids. Comparison with experimental results (Vézy, Massiera & Viallat, Soft Matt., vol. 3, 2007, pp. 844–851) is made, and it is shown how such studies could allow measurements of the membrane viscosity. Issues of symmetry-breaking and pattern selection are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abkarian, M. & Viallat, A. 2008 Vesicles and red blood cells in shear flow. Soft Matt. 4 (4), 653657.CrossRefGoogle ScholarPubMed
2. Barthes-Biesel, D. & Sgaier, H. 1985 Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear flow. J. Fluid Mech. 160, 119135.CrossRefGoogle Scholar
3. Blake, J. R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc. Camb. Phil. Soc. 70, 303.Google Scholar
4. Brochard-Wyart, F. & de Gennes, P. G. 2002 Adhesion induced by mobile binders: dynamics. Proc. Natl Acad. Sci. USA 99, 78547859.CrossRefGoogle ScholarPubMed
5. Camley, B. A., Esposito, C., Baumgart, T. & Brown, F. L. 2010 Lipid bilayer domain fluctuations as a probe of membrane viscosity. Biophys. J. 99, L44L46.CrossRefGoogle ScholarPubMed
6. Deschamps, J., Kantsler, V. & Steinberg, V. 2009 Phase diagram of single vesicle dynamical states in shear flow. Phys. Rev. Lett. 102 (11), 118105.CrossRefGoogle ScholarPubMed
7. Dimova, R., Dietrich, C., Hadjiisky, A., Danov, K. & Pouligny, B. 1999 Falling ball viscosimetry of giant vesicle membranes: finite-size effects. Eur. Phys. J. B 12 (4), 589598.CrossRefGoogle Scholar
8. Dussan V., E. B. 1987 On the ability of drops to stick to surfaces of solids. Part 3. The influences of the motion of the surrounding fluid on dislodging drops. J. Fluid Mech. 174, 381397.Google Scholar
9. Feng, S., Skalak, R. & Chien, S. 1989 Velocity distribution on the membrane of a tank-treading red blood cell. Bull. Math. Biol. 51 (4), 449465.Google Scholar
10. Happel, J. & Brenner, H. 1991 Low Reynolds number hydrodynamics: with special applications to particulate media. Kluwer Print on Demand.Google Scholar
11. Henle, M. L. & Levine, A. J. 2010 Hydrodynamics in curved membranes: The effect of geometry on particulate mobility. Phys. Rev. E 81 (1), 011905.Google Scholar
12. Henle, M. L., McGorty, R., Schofield, A. B., Dinsmore, A. D. & Levine, A. J. 2008 The effect of curvature and topology on membrane hydrodynamics. Europhys. Lett. 84, 48001.CrossRefGoogle Scholar
13. Kantsler, V., Segre, E. & Steinberg, V. 2007 Vesicle dynamics in time-dependent elongation flow: Wrinkling instability. Phys. Rev. Lett. 99 (17), 178102.Google Scholar
14. Keller, S. R. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 2747.Google Scholar
15. Lebedev, V. V., Turitsyn, K. S. & Vergeles, S. S. 2007 Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99 (21), 218101.CrossRefGoogle Scholar
16. Li, X. & Pozrikidis, C. 1996 Shear flow over a liquid drop adhering to a solid surface. J. Fluid Mech. 307, 167190.Google Scholar
17. Lorz, B., Simson, R., Nardi, J. & Sackmann, E. 2000 Weakly adhering vesicles in shear flow: Tanktreading and anomalous lift force. Europhys. Lett. 51, 468.CrossRefGoogle Scholar
18. Lubensky, D. K. & Goldstein, R. E. 1996 Hydrodynamics of monolayer domains at the air–water interface. Phys. Fluids 8 (4), 843854.CrossRefGoogle Scholar
19. van de Meent, J. -W., Sederman, A. J., Gladden, L. F. & Goldstein, R. E. 2010 Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry. J. Fluid Mech. 642, 514.Google Scholar
20. Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96, 028104.CrossRefGoogle ScholarPubMed
21. Ozarkar, S. S. & Sangani, A. S. 2008 A method for determining Stokes flow around particles near a wall or in a thin film bounded by a wall and a gas–liquid interface. Phys. Fluids 20, 063301.Google Scholar
22. Pickard, W. F. 1972 Further observations on cytoplasmic streaming in Chara braunii . Can. J. Bot. 50, 703711.Google Scholar
23. Saffman, P. G. 1976 Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73 (4), 593602.CrossRefGoogle Scholar
24. Saffman, P. G. & Delbrück, M. 1975 Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72, 31113113.Google Scholar
25. Seifert, U. 1997 Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1), 13137.CrossRefGoogle Scholar
26. Seifert, U. 1999 Fluid membranes in hydrodynamic flow fields: Formalism and an application to fluctuating quasispherical vesicles in shear flow. Eur. Phys. J. B 8, 405415.CrossRefGoogle Scholar
27. Seifert, U. & Langer, S. A. 1993 Viscous modes of fluid bilayer membranes. Europhys. Lett. 23, 71.CrossRefGoogle Scholar
28. Shankar, P. N. 2005 Moffatt eddies in the cone. J. Fluid Mech. 539, 113135.Google Scholar
29. Staykova, M., Lipowsky, R. & Dimova, R. 2008 Membrane flow patterns in multicomponent giant vesicles induced by alternating electric fields. Soft Matt. 4 (11), 21682171.CrossRefGoogle Scholar
30. Sugiyama, K. & Sbragaglia, M. 2008 Linear shear flow past a hemispherical droplet adhering to a solid surface. J. Engng Maths 62 (1), 3550.CrossRefGoogle Scholar
31. Tran-Cong, T. & Blake, J. R. 1982 General solutions of the Stokes’ flow equations. J. Math. Anal. Appl. 90 (1), 7284.CrossRefGoogle Scholar
32. Verchot-Lubicz, J. & Goldstein, R. E. 2010 Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma 240, 99107.Google Scholar
33. Vézy, C., Massiera, G. & Viallat, A. 2007 Adhesion induced non-planar and asynchronous flow of a giant vesicle membrane in an external shear flow. Soft Matt. 3 (7), 844851.CrossRefGoogle Scholar
34. Zhao, H. & Shaqfeh, E. S. G. 2011 The dynamics of a vesicle in simple shear flow. J. Fluid Mech. 674, 578604.CrossRefGoogle Scholar