Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T07:43:22.142Z Has data issue: false hasContentIssue false

Sound generation by laminar premixed flame annihilation

Published online by Cambridge University Press:  18 April 2011

MOHSEN TALEI
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
MICHAEL J. BREAR*
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
EVATT R. HAWKES
Affiliation:
School of Photovoltaic and Renewable Energy Engineering/School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney NSW 2052, Australia
*
Email address for correspondence: mjbrear@unimelb.edu.au

Abstract

This paper presents a numerical and theoretical investigation of the sound generated by premixed flame annihilation. Planar, axisymmetric and spherically symmetric flame annihilation events are considered. The compressible Navier–Stokes, energy and progress variable equations are first solved using simple chemistry simulations, resolving both the flame dynamics and the acoustics. These simulations show that the amplitude of the far-field sound produced by the annihilation events depends on the flame thickness, particularly for the axisymmetric and spherically symmetric flame annihilation events. The flame propagation velocity is also always observed to increase significantly prior to flame annihilation, which is in keeping with other reported experimental and numerical studies. A theory is then presented that relates the far-field sound to the flame annihilation event by using a previously reported and extended form of Lighthill's acoustic analogy. A comparison with the numerical results shows that this theory accurately represents the far-field sound produced by considering only the temporal heat release source term in Lighthill's acoustic analogy, as reported by others. Additional assumptions of an infinitely thin flame and constant flame speed are then invoked in an attempt to simplify the problem. In the planar annihilation, this theory results in good predictions of the overall pressure change. However, these assumptions lead to significant under-prediction of the amplitude of far-field sound produced for the axisymmetric and spherically symmetric annihilation events. Finally, dimensional reasoning supported by the simulations and theory is used to develop scalings of the far-field sound in terms of the flame parameters.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baillot, F., Durox, D. & Demare, D. 2002 Experiments on imploding spherical flames: effects of curvature. Proc. Combust. Inst. 29 (2), 14531460.CrossRefGoogle Scholar
Balachandran, R., Ayoola, B. O., Kaminski, C. F., Dowling, A. P. & Mastorakos, E. 2005 Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 143 (1–2), 3755.CrossRefGoogle Scholar
Baum, M. 1994 Etude de l'allumage et de la structure des flammes turbulentes. PhD thesis, Ecole Centrale Paris.Google Scholar
Birbaud, A. L., Ducruix, S., Durox, D. & Candel, S. 2006 Dynamics of free jets modulated by plane acoustic waves: Part II. Numerical simulations. In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), Cambridge, MA, AIAA-2006-2670.Google Scholar
Bourlioux, A., Cuenot, B. & Poinsot, T. 2000 Asymptotic and numerical study of the stabilization of diffusion flames by hot gas. Combust. Flame 120 (1–2), 143159.CrossRefGoogle Scholar
Bradley, D., Gaskell, P. H. & Gu, X. J. 1996 Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: a computational study. Combust. Flame 104 (1–2), 176198.CrossRefGoogle Scholar
Bragg, S. L. 1963 Combustion noise. J. Inst. Fuel 36 (264), 1216.Google Scholar
Bui, T. P., Meinke, M., Schröder, W., Flemming, F., Sadiki, A. & Janicka, J. 2005 A hybrid method for combustion noise based on LES and APE. In 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference), Monterey, CA.Google Scholar
Bui, T. P., Schröder, W. & Meinke, M. 2008 Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations. Comput. Fluids 37 (9), 11571169.CrossRefGoogle Scholar
Candel, S., Durox, D., Ducruix, S., Birbaud, A. L., Noiray, N. & Schuller, T. 2009 Flame dynamics and combustion noise: progress and challenges. Intl J. Aeroacoust. 8 (1 & 2), 156.CrossRefGoogle Scholar
Candel, S., Durox, D. & Schuller, T. 2004 Flame interactions as a source of noise and combustion instabilities. In 10th AIAA/CEAS Aeroacoustics Conference, Paper 2004-2928, pp. 1444–1454.Google Scholar
Candel, S., Veynante, D., Lacas, F., Maistret, E., Darabiha, N. & Poinsot, T. 1990 Coherent Flamelet Model: Applications and Recent Extensions. Recent Advances in Combustion Modelling. World Scientific.Google Scholar
Chen, C. L. & Sohrab, S. H. 1995 Upstream interactions between planar symmetric laminar methane premixed flames. Combust. Flame 101 (3), 360370.CrossRefGoogle Scholar
Clavin, P. & Siggia, E. D. 1991 Turbulent premixed flames and sound generation. Combust. Sci. Technol. 78, 147155.CrossRefGoogle Scholar
Corjon, A. & Poinsot, T. 1995 A model to define aircraft separations due to wake vortex encounter. In 13th AIAA Applied Aerodynamics Conference. AIAA Paper 95-1776., pp. 117–124.Google Scholar
Corjon, A. & Poinsot, T. 1997 Behavior of wake vortices near ground. AIAA J. 35 (5), 849855.CrossRefGoogle Scholar
Cuenot, B., Bedet, B. & Corjon, A. 1997 NTMIX3D User's Guide Manual, Preliminary Version 1.0.Google Scholar
Dowling, A. P. 1992 Modern Methods in Analytical Acoustics, chap. Thermoacoustic sources and instabilities, pp. 378403, Springer.Google Scholar
Dowling, A. P. & FfowcsWilliams, J. E. Williams, J. E. 1983 Sound and Sources of Sound. Ellis Horwood.Google Scholar
Duffy, D. G. 2001 Green's Functions with Applications. Chapman & Hall/CRC.CrossRefGoogle Scholar
Durox, D., Ducruix, S. & Candel, S. 2001 Experiments on collapsing cylindrical flames. Combust. Flame 125 (1–2), 9821000.CrossRefGoogle Scholar
Durox, D., Schuller, T., Noiray, N. & Candel, S. 2009 Experimental analysis of nonlinear flame transfer functions for different flame geometries. Proc. Combust. Inst. 32 (1), 13911398.CrossRefGoogle Scholar
Echekki, T. & Chen, J. H. 1999 Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame 118 (1), 308311.CrossRefGoogle Scholar
Echekki, T., Chen, J. H. & Gran, I. R. 1996 The mechanism of mutual annihilation of stoichiometric premixed methane–air flames. Proc. Combust. Inst. pp. 855–864.CrossRefGoogle Scholar
Flemming, F., Sadiki, A. & Janicka, J. 2007 Investigation of combustion noise using a LES/CAA hybrid approach. Proc. Combust. Inst. 31 (2), 31893196.CrossRefGoogle Scholar
Gibson, C. H. 1968 Fine structure of scalar fields mixed by turbulence. Part I. Zero-gradient points and minimal gradient surfaces. Phys. Fluids 11, 23052315.CrossRefGoogle Scholar
Hassan, H. A. 1974 Scaling of combustion-generated noise. J. Fluid Mech. 66 (3), 445453.CrossRefGoogle Scholar
Hirsch, C., Wäsle, J., Winkler, A. & Sattelmayer, T. 2007 A spectral model for the sound pressure from turbulent premixed combustion. Proc. Combust. Inst. 31 (1), 14351441.CrossRefGoogle Scholar
Howe, M. S. 1998 Acoustics of Fluid-Structure Interactions. Cambridge University Press.CrossRefGoogle Scholar
Hurle, I. R., Price, R. B., Sugden, T. M. & Thomas, A. 1968 Sound emission from open turbulent premixed flames. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 303 (1475), 409427.Google Scholar
Ihme, M., Bodony, D. J. & Pitsch, H. 2006 Prediction of combustion-generated noise in non-premixed flames using large-eddy simulation. In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), Cambridge, Massachusetts.Google Scholar
Ihme, M., Pitsch, H. & Bodony, D. J. 2009 Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32 (1), 15451553.CrossRefGoogle Scholar
Karimi, N., Brear, M. J., Jin, S. H. & Monty, J. P. 2009 Linear and non-linear forced response of a conical, ducted, laminar premixed flame. Combust. Flame 156 (11), 22012212.CrossRefGoogle Scholar
Kidin, N., Librovich, V., Macquisten, M., Roberts, J. & Vuillermoz, M. 1988 Possible acoustic source in turbulent combustion. Dyn. Reactive Syst. Part 1: Flames pp. 336–348.CrossRefGoogle Scholar
Kidin, N., Librovich, V., Roberts, J. & Vuillermoz, M. 1984 On sound sources in turbulent combustion. Dyn. Flames Reactive Syst. pp. 343–355.CrossRefGoogle Scholar
Kotake, S. 1975 On combustion noise related to chemical reactions. J. Sound Vib. 42, 399410.CrossRefGoogle Scholar
Laverdant, A. & Thévenin, D. 2003 Interaction of a gaussian acoustic wave with a turbulent premixed flame. Combust. Flame 134 (1–2), 1119.CrossRefGoogle Scholar
Laverdant, A. & Thévenin, D. 2005 Direct numerical simulation of a gaussian acoustic wave interaction with a turbulent premixed flame. Comptes Rendus-Mécanique 333 (1), 2937.CrossRefGoogle Scholar
Lieuwen, T. 2003 Modeling premixed combustion-acoustic wave interactions: A review. J. Propul. Power 19 (5), 765781.CrossRefGoogle Scholar
Lieuwen, T., Mohan, S. & Rajaram, R. 2006 Acoustic radiation from weakly wrinkled premixed flames. Combust. Flame 144 (1–2), 360369.CrossRefGoogle Scholar
Lieuwen, T. & Yang, V., (Ed.) 2006 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling, vol. 210. Progress in Astronautics and Aeronautics, AIAA.CrossRefGoogle Scholar
Lighthill, M. J. 1951 On sound generation aerodynamically I. General Theory. Proc. R. Soc. Lond. 211, 564587.Google Scholar
Lu, Z. & Ghosal, S. 2003 A similarity solution describing the collision of two planar premixed flames. Combust. Theory Model. 7 (4), 645652.CrossRefGoogle Scholar
Lu, Z. & Ghosal, S. 2004 Flame holes and flame disks on the surface of a diffusion flame. J. Fluid Mech. 513, 287307.CrossRefGoogle Scholar
Miyauchi, T., Tanahashi, M. & Li, Y. 2001 Mechanism and prediction of sound generation in reacting mixing layers. In 2nd Symposium on Smart Control of Turbulence, University of Tokyo, Japan.Google Scholar
Mohseni, K. & Colonius, T. 2000 Numerical treatment of polar coordinate singularities. J. Comput. Phys. 157 (2), 787795.CrossRefGoogle Scholar
Najafi-Yazdi, A., Lew, P. T. & Mongeau, L. 2010 Direct numerical simulation of sound radiation by a diffusion flame in a planar shear layer. In 16th AIAA/CEAS Aeroacoustics Conference, pp. 441–458.Google Scholar
Pantano, C. & Pullin, D. I. 2003 On the dynamics of the collapse of a diffusion-flame hole. J. Fluid Mech. 480, 311332.CrossRefGoogle Scholar
Petrov, C. A. & Ghoniem, A. F. 1998 Dynamics and structure of interacting nonpremixed flames. Combust. Flame 115 (1–2), 180194.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. RT Edwards, Inc.Google Scholar
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.CrossRefGoogle Scholar
Schuller, T., Durox, D. & Candel, S. 2002 Dynamics of and noise radiated by a perturbed impinging premixed jet flame. Combust. Flame 128 (1–2), 88110.CrossRefGoogle Scholar
Schwarz, A. & Janicka, J., (Ed.) 2009 Combustion Noise. Springer.CrossRefGoogle Scholar
Shalaby, H., Laverdant, A. & Thévenin, D. 2009 Direct numerical simulation of a realistic acoustic wave interacting with a premixed flame. Proc. Combust. Inst. 32 (1), 14731480.CrossRefGoogle Scholar
Sivashinsky, G. I. 1974 On a converging spherical flame front. Intl J. Heat Mass Transfer 17, 14991506.CrossRefGoogle Scholar
Smith, T. J. B. & Kilham, J. K. 1963 Noise generation by open turbulent flames. J. Acoust. Soc. Am. 35, 715724.CrossRefGoogle Scholar
Strahle, W. C. 1971 On combustion generated noise. J. Fluid Mech. 49 (2), 399414.CrossRefGoogle Scholar
Strahle, W. C. 1978 Combustion noise. Prog. Energy Combust. Sci. 4, 157176.CrossRefGoogle Scholar
Strahle, W. C. 1985 A more modern theory of combustion noise. In Recent Advances in Aerospace Sciences, pp. 103114. Plenum Press.CrossRefGoogle Scholar
Sun, C. J. & Law, C. K. 1998 On the consumption of fuel pockets via inwardly propagating flames. Proc. Combust. Inst. 27, 963970.CrossRefGoogle Scholar
Talei, M. 2011 Sound generation by combusting and non-combusting, low Mach number flows. PhD thesis, Department of Mechanical Engineering, The University of Melbourne.Google Scholar
Tanahashi, M., Tsukinari, S., Saitoh, T., Miyauchi, T., Gyung-min, C., Ikame, M., Kishi, T., Harumi, K. & Hiraoka, K. 2002 On the sound generation and its controls in turbulent combustion field. In 3rd Symposium on Smart Control of Turbulence, University of Tokyo, Japan.Google Scholar
Thomas, A. & Williams, G. T. 1966 Flame noise: sound emission from spark-ignited bubbles of combustible gas. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 294 (1439), 449466.Google Scholar
Truffaut, J. M., Searby, G. & Boyer, L. 1998 Sound emission by non-isomolar combustion at low mach numbers. Combust. Theory Model. 2 (4), 423428.CrossRefGoogle Scholar
Wichman, I. S. & Vance, R. 1997 A study of one-dimensional laminar premixed flame annihilation. Combust. Flame 110 (4), 508523.CrossRefGoogle Scholar
Zhao, W. & Frankel, S. H. 2001 Numerical simulations of sound radiated from an axisymmetric premixed reacting jet. Phys. Fluids 13, 26712681.CrossRefGoogle Scholar