Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T20:36:30.188Z Has data issue: false hasContentIssue false

Space–time characteristics of a compliant wall in a turbulent channel flow

Published online by Cambridge University Press:  01 September 2014

Euiyoung Kim
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea
Haecheon Choi*
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea Institute of Advanced Machines and Design, Seoul National University, Seoul 151-744, Korea
*
Email address for correspondence: choi@snu.ac.kr

Abstract

The space–time characteristics of a compliant wall in a turbulent channel flow are investigated using direct numerical simulation (DNS). The compliant wall is modelled as a homogeneous plane supported by spring-and-damper arrays and is passively driven by wall-pressure fluctuations. The frequency/wavenumber spectra and convection velocities of the wall-pressure fluctuations, wall displacement and wall velocity are obtained from the present simulation. As the spring, damping, and tension coefficients decrease, the wall becomes softer and the wall displacement and velocity fluctuations increase. For a relatively stiff compliant wall (i.e. large spring, damping and streamwise tension coefficients), there are few changes in the skin-friction drag and near-wall turbulence structures. However, when a compliant wall is soft (i.e. small spring, damping and streamwise tension coefficients), the wall moves in the form of a large-amplitude quasi-two-dimensional wave travelling in the downstream direction. This wave is generated by the resonance of the wall property and the near-wall flow is significantly activated by this wall motion. The power spectra of wall variables show distinct peaks near the resonance frequencies. The convection velocities of the wall motion and wall-pressure fluctuations become smaller with a softer wall.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1960 Effects of a flexible boundary on hydrodynamic stability. J. Fluid Mech. 9, 513532.Google Scholar
Benjamin, T. B. 1963 The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows. J. Fluid Mech. 16, 436450.Google Scholar
Bushnell, D. M., Hefner, J. N. & Ash, R. L. 1977 Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids 20, S31.Google Scholar
Calhoun, R. J. & Street, R. L. 2001 Turbulent flow over a wavy surface: neutral case. J. Geophys. Res. 106, 92779293.Google Scholar
Carpenter, P. W. & Garrad, A. D. 1985 The hydrodynamic stability of flows over Kramer-type compliant surfaces. Part 1. Tollmien–Schlichting instabilities. J. Fluid Mech. 155, 465510.Google Scholar
Carpenter, P. W. & Garrad, A. D. 1986 The hydrodynamic stability of flows over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech. 170, 199232.Google Scholar
Choi, H. & Moin, P. 1990 On the space–time characteristics of wall-pressure fluctuations. Phys. Fluids A 2, 14501460.Google Scholar
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.Google Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.Google Scholar
Choi, K.-S., Yang, X., Clayton, B. R., Glover, E. J., Atlar, M., Semenov, B. N. & Kulik, V. M. 1997 Turbulent drag reduction using compliant surfaces. Proc. R. Soc. Lond. A 453, 22292240.Google Scholar
Davies, C. & Carpenter, P. W. 1997 Instabilities in a plane channel flow between compliant walls. J. Fluid Mech. 352, 205243.Google Scholar
Duncan, J. H., Waxman, A. M. & Tulin, M. P. 1985 The dynamics of waves at the interface between a viscoelastic coating and a fluid flow. J. Fluid Mech. 158, 177197.CrossRefGoogle Scholar
Endo, T. & Himeno, R. 2002 Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul. 3, 110.Google Scholar
Fukagata, K., Kern, S., Chatelain, P., Koumoutsakos, P. & Kasagi, N. 2008 Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul. 9, 117.Google Scholar
Gad-el-Hak, M. 1986 The response of elastic and viscoelastic surfaces to a turbulent boundary layer. Trans. ASME: J. Appl. Mech. 53, 206212.Google Scholar
Gad-el-Hak, M. 2002 Compliant coatings for a drag reduction. Prog. Aerosp. Sci. 38, 7799.Google Scholar
Gad-el-Hak, M., Blackwelder, R. F. & Riley, J. J. 1984 On the interaction of compliant coatings with boundary layer flows. J. Fluid Mech. 140, 257280.Google Scholar
Hansen, R. J., Hunston, D. L., Ni, C. C. & Reischman, M. M. 1980 An experimental study of flow-generated waves on a flexible surface. J. Sound Vib. 68, 317334.CrossRefGoogle Scholar
Hess, D. E., Peattie, R. A. & Schwarz, W. H. 1993 A non-intrusive method for the measurement of flow-induced surface displacement of a compliant surface. Exp. Fluids 14, 7884.CrossRefGoogle Scholar
Hœpffner, J., Bottaro, A. & Favier, J. 2010 Mechanisms of non-modal energy amplification in channel flow between compliant walls. J. Fluid Mech. 642, 489507.CrossRefGoogle Scholar
Jeon, S., Choi, H., Yoo, J. Y. & Moin, P. 1999 Space–time characteristics of the wall shear-stress fluctuations in a low-Reynolds-number channel flow. Phys. Fluids 11, 30843094.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.Google Scholar
Kang, S. & Choi, H. 2000 Active wall motions for skin-friction drag reduction. Phys. Fluids 12, 33013304.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
Kramer, M. O. 1957 Boundary-layer stabilization by distributed damping. J. Aero. Sci. 24, 459460.Google Scholar
Kramer, M. O. 1960 Boundary-layer stabilization by distributed damping. J. Am. Soc. Nav. Engrs 72, 2533.Google Scholar
Kulik, V. M. 2012 Action of a turbulent flow on a hard compliant coating. Intl J. Heat Fluid Flow 33, 232241.CrossRefGoogle Scholar
Kulik, V. M., Lee, I. & Chun, H. H. 2008 Wave properties of coating for skin friction reduction. Phys. Fluids 20, 075109.CrossRefGoogle Scholar
Kulik, V. M., Poguda, I. S. & Semenov, B. N. 1991 Experimental investigation of one-layer viscoelastic coatings action on turbulent friction and wall pressure pulsations. In Recent Developments in Turbulence Management (ed. Choi, K.-S.), pp. 263289. Kluwer.Google Scholar
Kulik, V. M., Rodyakin, S. V., Lee, I. & Chun, H. H. 2005 Deformation of a viscoelastic coating under the action of convective pressure fluctuations. Exp. Fluids 38, 648655.Google Scholar
Landahl, M. T. 1962 On the stability of a laminar incompressible boundary layer over a flexible surface. J. Fluid Mech. 13, 609632.Google Scholar
Lee, T., Fisher, M. & Schwarz, W. H. 1993a Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257, 373401.Google Scholar
Lee, T., Fisher, M. & Schwarz, W. H. 1993b The measurement of flow-induced surface displacement on a compliant surface by optical holographic interferometry. Exp. Fluids 14, 159168.Google Scholar
Mamori, H., Iwamoto, K. & Murata, A. 2014 Effect of the parameters of traveling waves created by blowing and suction on the relaminarization phenomena in fully developed turbulent channel flow. Phys. Fluids 26, 015101.CrossRefGoogle Scholar
McMichael, J. M., Klebanoff, P. S. & Mease, N. E. 1980 Experimental investigation of drag on a compliant surface. In Viscous Flow Drag Reduction (ed. Hough, G. R.), vol. 72, pp. 410438. AIAA.Google Scholar
Nakanishi, R., Mamori, H. & Fukagata, K. 2012 Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Intl J. Heat Fluid Flow 35, 152159.CrossRefGoogle Scholar
Riley, J. J., Gad-el-Hak, M. & Metcalfe, R. W. 1988 Compliant coatings. Annu. Rev. Fluid Mech. 20, 393420.CrossRefGoogle Scholar
Semenov, B. N. 1991 On conditions of modeling and choice of viscoelastic coating for drag reduction. In Recent Developments in Turbulence Management (ed. Choi, K.-S.), pp. 241262. Kluwer.Google Scholar
Shen, L., Zhang, X., Yue, D. K. P. & Triantafyllou, M. S. 2003 Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion. J. Fluid Mech. 484, 197221.Google Scholar
Shrivastava, A., Cussler, E. L. & Kumar, S. 2008 Mass transfer enhancement due to a soft elastic boundary. Chem. Engng Sci. 63 (17), 43024305.Google Scholar
Spalart, P. R., Moser, R. D. & Rogers, M. M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297324.Google Scholar
Tseng, Y.-H. & Ferziger, J. H. 2004 Large-eddy simulation of turbulent wavy boundary flow illustration of vortex dynamics. J. Turbul. 5, N34.CrossRefGoogle Scholar
Verma, M. K. S. & Kumaran, V. 2013 A multifold reduction in the transition Reynolds number, and ultra-fast mixing, in a micro-channel due to a dynamical instability induced by a soft wall. J. Fluid Mech. 727, 407455.Google Scholar
Wills, J. A. B. 1970 Measurements of the wavenumber/phase velocity spectrum of wall pressure beneath a turbulent boundary layer. J. Fluid Mech. 45, 6590.Google Scholar
Xu, S., Rempfer, D. & Lumley, J. 2003 Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478, 1134.CrossRefGoogle Scholar
Yang, D. & Shen, L. 2009 Characteristics of coherent vortical strucutres in turbulent flows over progressive surface waves. Phys. Fluids 21, 125106.Google Scholar