Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:02:07.047Z Has data issue: false hasContentIssue false

Spatial resolution correction for wall-bounded turbulence measurements

Published online by Cambridge University Press:  06 April 2011

A. J. SMITS*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
J. MONTY
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
M. HULTMARK
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
S. C. C. BAILEY
Affiliation:
Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA
N. HUTCHINS
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
I. MARUSIC
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
*
Email address for correspondence: asmits@princeton.edu

Abstract

A correction for streamwise Reynolds stress data acquired with insufficient spatial resolution is proposed for wall-bounded flows. The method is based on the attached eddy hypothesis to account for spatial filtering effects at all wall-normal positions. This analysis reveals that outside the near-wall region the spatial filtering effect scales inversely with the distance from the wall, in contrast to the commonly assumed scaling with the viscous length scale. The new formulation is shown to work very well for data taken over a wide range of Reynolds numbers and wire lengths.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Bailey, S. C. C., Kunkel, G. J., Hultmark, M., Vallikivi, M., Hill, J. P., Meyer, K. A., Tsay, C., Arnold, C. B. & Smits, A. J. 2010 Turbulence measurements using a nanoscale thermal anemometry probe. J. Fluid Mech. 663, 160179.CrossRefGoogle Scholar
Cameron, J. D., Morris, S. C., Bailey, S. C. C. & Smits, A. J. 2010 Effects of hot-wire length on the measurement of turbulent spectra in anisotropic flows. Meas. Sci. Technol. 21, 105407.CrossRefGoogle Scholar
Carlier, J. & Stanislas, M. 2005 Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143188.CrossRefGoogle Scholar
Chin, C. C., Hutchins, N., Ooi, A. S. & Marusic, I. 2009 Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence. Meas. Sci. Technol. 20, 115401.CrossRefGoogle Scholar
DeGraaff, D. B. & Eaton, J. K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.CrossRefGoogle Scholar
Etter, R. J., Cutbirth, J., Ceccio, S., Dowling, D. & Perlin, M. 2005 High Reynolds number experimentation in the U.S. Navy's William B. Morgan large cavitation channel. Meas. Sci. Technol. 16, 17011709.CrossRefGoogle Scholar
Fernholz, H. H., Krause, E., Nockemann, M. & Schober, M. 1995 Comparative measurements in the canonical boundary layer at Re θ ≤ 6 × 104 on the wall of the DNW. Phys. Fluids 7, 12751281.CrossRefGoogle Scholar
Hultmark, M. N., Bailey, S. C. C. & Smits, A. J. 2010 Scaling of near-wall turbulence in pipe flow. J. Fluid Mech. 649, 103113.CrossRefGoogle Scholar
Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.CrossRefGoogle Scholar
Jiménez, J. M., Hultmark, M. & Smits, A. J. 2010 The intermediate wake of a body of revolution at high Reynolds number. J. Fluid Mech. 659, 516539.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Rundstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.CrossRefGoogle Scholar
Lagerlof, R. O. E. 1974 Interpolation with rounded ramp functions. Commun. ACM 17 (8), 476497.CrossRefGoogle Scholar
Ligrani, P. M. & Bradshaw, P. 1987 Subminiature hot-wire sensors: development and use. J. Phys. E: Sci. Instrum. 20, 323332.CrossRefGoogle Scholar
Marusic, I. & Kunkel, G. J. 2003 Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids 15, 24612464.CrossRefGoogle Scholar
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows: recent advances and key issues. Phys. Fluids 22, 065103.CrossRefGoogle Scholar
Metzger, M. M. & Klewicki, J. C. 2001 A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys. Fluids 13 (3), 692701.CrossRefGoogle Scholar
Mochizuki, S. & Nieuwstadt, F. T. M. 1996 Reynolds-number-dependence of the maximum in the streamwise velocity fluctuations in wall turbulence. Exp. Fluids 21, 218226.CrossRefGoogle Scholar
Monkewitz, P. A., Duncan, R. D. & Nagib, H. M. 2010 Correcting hot-wire measurements of stream-wise turbulence intensity in boundary layers. Phys. Fluids 22, 091701.CrossRefGoogle Scholar
Morrison, J. F., McKeon, B. J., Jiang, W. & Smits, A. J. 2004 Scaling of the streamwise velocity component in turbulent pipe flow. J. Fluid Mech. 508, 99131.CrossRefGoogle Scholar
Nagib, H. M., Chauhan, K. A. & Monkewitz, P. A. 2007 Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. Lond. A 365, 755.Google Scholar
Ng, H., Monty, J., Hutchins, N., Chong, M. & Marusic, I. 2011 Comparison of turbulent channel and pipe flows with varying Reynolds number. J. Fluid Mech. (submitted).CrossRefGoogle Scholar
Nickels, T. B., Marusic, I., Hafez, S. M., Hutchins, N. & Chong, M. S. 2007 Some predictions of the attached eddy model for a high Reynolds number boundary layer. Phil. Trans. R. Soc. Lond. A 365, 807822.Google ScholarPubMed
Österlund, J. M., Johansson, A. V., Nagib, H. M. & Hites, M. H. 2000 A note on the overlap region in turbulent boundary layers. Phys. Fluids 12 (1), 14.CrossRefGoogle Scholar
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.CrossRefGoogle Scholar
Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.CrossRefGoogle Scholar
Stanislas, M., Perret, L. & Foucaut, J.-M. 2008 Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327382.CrossRefGoogle Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Winkel, E., Oweis, G., Cutbirth, J., Ceccio, S., Perlin, M. & Dowling, D. 2010 The mean velocity profile of a smooth flat-plate turbulent boundary layer at high Reynolds number. J. Fluid Mech. 665, 357381.Google Scholar
Wyngaard, J. C. 1968 Measurements of small scale turbulence structure with hot-wires. J. Sci. Instrum. 1, 11051108.CrossRefGoogle Scholar
Yakhot, V., Bailey, S. C. C. & Smits, A. J. 2010 Scaling of global properties of turbulence and skin friction in pipe and channel flows. J. Fluid Mech. 652, 6573.CrossRefGoogle Scholar
Zagarola, M. V. & Smits, A. J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.CrossRefGoogle Scholar